Many bee species show flower constancy, that is, a tendency to visit flowers of one type during a foraging trip. Flower constancy is important for plant reproduction, but the benefits of constancy to bees is unclear. Social bees, which often use communication about food sources, show particularly strong flower constancy. We aimed to better understand the benefits of flower constancy in social bees and how these benefits depend on foraging conditions. We hypothesised that sharing social information increases the benefits of flower constancy because social foragers share information selectively about high-quality food sources, thereby reducing the need to sample alternatives. We developed an agent-based model that allowed us to simulate bee colonies with and without communication and flower constancy in different foraging environments. By varying key environmental parameters, such as food source numbers and reward size, we explored how the costs and benefits of flower constancy depend on the foraging landscape. Flower constancy alone performed poorly in all environments, while indiscriminate flower choice was often the most successful strategy. However, communication improved the performance of flower constant colonies considerably in most environments. This combination was particularly successful when high-quality food sources were abundant and competition was weak. Our findings help explain why social bees tend to be more flower constant than solitary bees and suggest that flower constancy can be an adaptive strategy in social bees. Simulations suggest that anthropogenic changes of foraging landscapes will have different effects on the foraging performance of bees that vary in flower constancy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.13861DOI Listing

Publication Analysis

Top Keywords

flower constancy
40
social bees
16
flower
13
food sources
12
benefits flower
12
constancy
11
bees
8
bees flower
8
agent-based model
8
foraging conditions
8

Similar Publications

Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.

Sci Total Environ

January 2025

Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye; USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA. Electronic address:

Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward.

View Article and Find Full Text PDF

Pollinator response to yellow UV-patterned versus white UV-patternless flower dimorphism in Anemone palmata.

Plant Biol (Stuttg)

October 2024

Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.

Flower colour polymorphisms are uncommon but widespread among angiosperms and can be maintained by a variety of balancing selection mechanisms. Anemone palmata is mostly yellow-flowered, but white-flowered plants coexist in some populations. We analysed the distribution of colour morphs of A.

View Article and Find Full Text PDF

Many bees visit just one flower species during a foraging trip, i.e. they show flower constancy.

View Article and Find Full Text PDF

Bumblebee flower constancy and pollen diversity over time.

Behav Ecol

April 2023

Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden and.

Bees often focus their foraging effort on a few or even a single flower species, even if other equally rewarding flower species are present. Although this phenomenon-called flower constancy-has been widely documented during single foraging trips, it is largely unknown if the behavior persists over longer time periods, especially under field conditions with large temporal variations of resources. We studied the pollen diet of individuals from nine different colonies for up to 6 weeks, to investigate flower constancy and pollen diversity of individuals and colonies, and how these change over time.

View Article and Find Full Text PDF

Premise: Bees provision most of the pollen removed from anthers to their larvae and transport only a small proportion to stigmas, which can negatively affect plant fitness. Though most bee species collect pollen from multiple plant species, we know little about how the efficiency of bees' pollen transport varies among host plant species or how it relates to other aspects of generalist bee foraging behavior that benefit plant fitness, such as specialization on individual foraging bouts.

Methods: We compared the pollen collected and transported by three bee species for 46 co-occurring plant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!