AI Article Synopsis

  • Biallelic pathogenic variants in the NBAS gene can lead to various disorders, including optic atrophy and skeletal issues, and this study focuses on two sisters with these conditions linked to genetic variants in NBAS.
  • Genome sequencing identified a 1-bp deletion and a non-canonical splice site variant in both sisters, which were linked to their eye conditions but not other typical symptoms associated with NBAS disorders.
  • The findings suggest that the sisters' phenotype might result from residual protein function due to the splice site variant, adding to the understanding of NBAS-related disorder characteristics.

Article Abstract

Background: Biallelic pathogenic variants in the neuroblastoma-amplified sequence (NBAS) gene manifest in a broad spectrum of disorders, including, but not limited to recurrent acute liver failure, skeletal dysmorphism, susceptibility to infections, and SOPH syndrome with its cardinal symptoms of short stature, optic atrophy, and Pelger-Huët anomaly. We aimed to present clinical and genetic characteristics of two sisters (20 and 15 years old) who were diagnosed with optic atrophy and cone dystrophy in childhood. Genome sequencing revealed two novel variants in NBAS in compound heterozygous state in both sisters, namely a 1-bp deletion predicted to result in a premature termination codon (c.5104del; p.(Met1702*)), and a non-canonical splice site variant of unclear significance (c.886-5T>A; p.?).

Results: Clinical examination and history revealed cone dystrophy, optic atrophy, and Pelger-Huët anomaly, but no short stature, recurrent acute liver failure, or susceptibility to infections. RNA analysis revealed that the c.886-5T>A variant results in two aberrant transcripts that are predicted to lead to in frame amino acid changes in the β-propeller region of the protein.

Conclusion: We hypothesize that the phenotype of our subjects, which appears to be at the end of the spectrum of NBAS-related disorders, could be explained by residual protein function mediated by the non-canonical splice site variant c.886-5T>A. Our study contributes to the existing knowledge on the genotypic and phenotypic spectrum of NBAS-related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009903PMC
http://dx.doi.org/10.1002/mgg3.2120DOI Listing

Publication Analysis

Top Keywords

non-canonical splice
12
splice site
12
site variant
12
optic atrophy
12
variant c886-5t>a
8
recurrent acute
8
acute liver
8
liver failure
8
susceptibility infections
8
short stature
8

Similar Publications

Introduction: Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder classically associated with multiple basal cell carcinomas, odontogenic keratocysts and skeletal anomalies. However, its significant phenotypic heterogeneity often delays the diagnosis. Here, we undertake the first comprehensive characterisation of NBCCS and congenital urinary tract anomalies.

View Article and Find Full Text PDF

Loeys-Dietz syndrome (LDS) is a connective tissue disorder representing a wide spectrum of phenotypes, ranging from isolated thoracic aortic aneurysm or dissection to a more severe syndromic presentation with multisystemic involvement. Significant clinical variability has been noted for both related and unrelated individuals with the same pathogenic variant. We report a family of five affected individuals with notable phenotypic variability who appear to have two distinct molecular causes of LDS, one attributable to a missense variant in and the other an intronic variant 6 bp upstream from a splice junction in .

View Article and Find Full Text PDF

Cov-trans: an efficient algorithm for discontinuous transcript assembly in coronaviruses.

BMC Genomics

December 2024

School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.

Background: Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem.

View Article and Find Full Text PDF

Breast cancer stem cells (BCSCs) are a rare cell population that is responsible for tumour initiation, metastasis and chemoresistance. Despite this, the mechanism by which BCSCs withstand genotoxic stress is largely unknown. Here, we uncover a pivotal role for the arginine methyltransferase PRMT5 in mediating BCSC chemoresistance by modulating DNA repair efficiency.

View Article and Find Full Text PDF

Mechanistic Insights Into Post-translational α-Keto-β-Amino Acid Formation by a Radical S-Adenosyl Methionine Peptide Splicease.

Angew Chem Int Ed Engl

December 2024

ETH Zurich: Eidgenossische Technische Hochschule Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 1-5/10, HCI G433, 8008, Zürich, SWITZERLAND.

Radical S-adenosyl methionine enzymes catalyze a diverse repertoire of post-translational modifications in protein and peptide substrates. Among these, an exceptional and mechanistically obscure example is the installation of α-keto-β-amino acid residues by formal excision of a tyrosine-derived tyramine unit. The responsible spliceases are key maturases in a widespread family of natural products termed spliceotides that comprise potent protease inhibitors, with the installed β-residues being crucial for bioactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!