Ethylene-propylene grafted-maleic anhydride (EPR-g-MA) and a pure maleic anhydride (MA) were separately used to compound carboxylated acrylonitrile butadiene-rubber (XNBR) together with reduced graphene oxide (G) to form nanocomposites, by using melt compounding technique. The G-sheets in the presence of MA (GA samples) or EPR-g-MA (GB samples) generally increased the physico-mechanical properties including; crosslinking density, tensile strength and thermal degradation resistance etc., when compared with sample without MA or EPR-g-MA (GAO) and the virgin matrix. For the thermal degradation resistance measured by the char residue (%), by using thermal gravimetric analysis technique; GA1 (0.1 ph G and 0.5 ph MA) was 106.4% > XNBR and 58% > GAO (0.1 ph G) while that of GB1 (0.1 ph G and 0.5 ph EPR-g-MA) was 60% > XNBR and 22.2% > GAO respectively. Although, homogeneous dispersions of the G-sheets assisted by MA or EPR-g-MA was a factor, but the strong bonding (covalent, hydrogen and physical entanglements) occurring in GA and GB was observed to be the main contributing factor for these property enhancements. Thus, these nanostructured materials have exhibited multifunctional capabilities and could be used for advanced applications including high temperature (heat sinks), flame retardants, and structural applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720606PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e11974DOI Listing

Publication Analysis

Top Keywords

acrylonitrile butadiene-rubber
8
thermal degradation
8
degradation resistance
8
epr-g-ma
5
graphene-maleic anhydride-grafted-carboxylated
4
anhydride-grafted-carboxylated acrylonitrile
4
butadiene-rubber nanocomposites
4
nanocomposites ethylene-propylene
4
ethylene-propylene grafted-maleic
4
grafted-maleic anhydride
4

Similar Publications

Influence of Kazakhstan's Shungites on the Physical-Mechanical Properties of Nitrile Butadiene Rubber Composites.

Polymers (Basel)

November 2024

Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan.

Article Synopsis
  • This study investigates the use of shungite ore and its concentrate from Kazakhstan as fillers in nitrile butadiene rubber composites.
  • The flotation process significantly increased the carbon content in shungite while reducing silicon oxide, impacting the physical and mechanical properties of the rubber.
  • Results showed that replacing carbon black with shungite improved certain properties of the rubber, such as reduced viscosity and increased tensile strength, without significantly affecting oil resistance.
View Article and Find Full Text PDF

This paper investigates the phase behaviors, morphology changes, and degree of dispersion of a multi-component cathode battery slurry system. The slurry comprises polyvinylidene fluoride (PVDF) as the binder, hydrogenated nitrile butadiene rubber (HNBR) as the dispersant with varying acrylonitrile (ACN) content, N-methyl-2-pyrrolidone (NMP) as the solvent, and carbon nanotubes/graphene (CNTs/GRA) as the conductive agent. Several analytical methods, including visualized imaging, solubility parameters, radial distribution function (RDF) analysis, β phase PVDF analysis, near-atom analysis, and potential of mean force (PMF) analysis, were employed to compare the slurry's characteristics.

View Article and Find Full Text PDF

Nitrile glove composition and performance-Substandard properties and inaccurate packaging information.

PLoS One

October 2024

Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, United States of America.

The durability and mechanical properties of synthetic medical gloves, such as those made from nitrile, vary drastically depending on the manufacturer. This study reports the chemical composition of several brands of nitrile gloves via FTIR and solid-state NMR analysis and relates composition to glove durability (found via GAD), mechanical performance (found via Instron), and whether the gloves meet or fail ASTM International standards. Out of the four nitrile examination glove brands tested, American Nitrile Slate brand had superior durability results and was found to be made of acrylonitrile butadiene rubber, as expected.

View Article and Find Full Text PDF

The equilibrium swelling test was employed to determine the swelling response of Nitrile Butadiene Rubber (NBR) with various acrylonitrile (ACN) contents, and the three-dimensional solubility parameter (HSP) and modified Flory-Huggins interaction parameter (χ) were used to establish the prediction model of the oil-resistant property. The results indicate that the energy difference (Ra) between NBR and solvents calculated by HSP values can be correlated with the swelling response qualitatively with an inversed "S-shape", and high swelling response occurs at Ra < 8 MPa for NBR. For the purpose of establishing the prediction model, the new modified χ value has been calculated and fitted with the swelling response using exponential and logarithmic fittings, respectively.

View Article and Find Full Text PDF

The purpose of this work was to improve the adhesive properties of modified epoxy-novolac resin by acrylonitrile-butadiene rubber (NBR) grafted poly(chromium methacrylate). Chromium methacrylate was prepared by reaction of basic chromium sulfate with sodium methacrylate. Acrylonitrile-butadiene rubber grafted poly(chromium methacrylate) (GNBR) was successfully prepared by solution graft copolymerization to improve the adhesive properties of epoxy-novolac resin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!