Concurrent function of high-strength dry carbon fiber as resistive heating element and thermistor in ambient air.

Heliyon

Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand.

Published: December 2022

Measuring temperature through carbon fiber reinforced plastics requires an implanted contact-based temperature sensor during resistive heating. Implanting the sensor brings about considerable complications in the heat-joining of soft biocompatible Carbon Fiber Reinforced Plastics (CFRPs). In this paper, the concurrent temperature-dependent Electrical Resistance (ER) behavior of Carbon Fiber (CF) tow along with resistive heating is introduced. The temperature feedback from CF tow was investigated in the range of 60-200 °C in the room condition. The process is characterized by high nonlinearity due to complex mode of heat loss, orthotropic and semi-conductive nature of CF, resistivity of contacts, gas-moisture adsorption and ambient changes. In such conditions, experiments were conducted to study the Current-Voltage (I-V), ER-time and ER-temperature in steady-state and transient modes. I-V relationship was non-ohmic and ER-temperature relationship showed negative temperature coefficient at temperatures above 60 °C. Exponential behavior similar to that of thermistors was identified in ER-temperature relationship. The relationship is expressed by Hoge-quartic model, , showing the best fit among the conventional calibration equations of thermistor. The reversibility of ER-temperature relationship with maximum error of 16.4 °C was observed. The repeatability of the relationship shows the CF viability of providing concurrent temperature feedback during high-current Joule heating in the room condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720031PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e12051DOI Listing

Publication Analysis

Top Keywords

carbon fiber
16
resistive heating
12
er-temperature relationship
12
fiber reinforced
8
reinforced plastics
8
temperature feedback
8
room condition
8
relationship
6
temperature
5
concurrent function
4

Similar Publications

Temperature dynamics and mechanical properties analysis of carbon fiber epoxy composites radiated by nuclear explosion simulated light source.

Sci Rep

January 2025

Engineering Research Center of Flexible Radiation Protection Technology, Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China.

The impact of light radiation, a predominant energy release mechanism in nuclear explosions, on material properties is of critical importance. This investigation employed an artificial light source to replicate the effects of nuclear explosion radiation and utilized a physical information neural network (PINN) to examine the temperature evolution and corresponding changes in the mechanical properties of carbon fiber/epoxy composites (CFEC). A light source simulating nuclear explosion's light radiation was built to irradiate the CFEC, then measure the reflection spectrum and temperature of samples.

View Article and Find Full Text PDF

This study aimed to establish a microwave-assisted method (MAE) for the efficient extraction of polysaccharides from dandelion roots. This study investigated the molecular structure and bioactivity of the polysaccharides from dandelion roots. Extraction conditions were optimized using response surface methodology (RSM).

View Article and Find Full Text PDF

Inhalation of 131I is the main route for internal doses to nuclear medicine workers. This study aimed to establish a simple analysis method for determining 131I activity in carbon cartridges, explore the activity concentration of 131I in nuclear medicine departments, and evaluate the internal dose of workers. A total of 21 nuclear medicine departments in the hospital conducted air sampling using a high-volume air sampler equipped with carbon cartridges and glass fiber filters to collect gaseous 131I and aerosol 131I, respectively.

View Article and Find Full Text PDF

Recyclable Millable PolyureThane based on Enaminone Bonds With Upcycled Mechanical Performance.

Macromol Rapid Commun

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.

Thermoplastic polyurethane (TPU) exhibits re-processable properties, but the properties of TPU is deteriorated during the reprocessing for the oxidation and degradation of polymer chains. Meanwhile, although thermoset polyurethane exhibits excellent mechanical properties, it cannot be recycled for permanent crosslinking. Hence, it's still a challenge to obtain PU which exhibits the balance between the recyclability and mechanical properties.

View Article and Find Full Text PDF

Cattail (), a wetland plant, is emerging as a sustainable materials resource. While most of the species are proven to be a fiber-yielding crop, exhibits the broadest leaf size (5-30 mm), yields highest amount of fiber (≈190.9 g), and captures maximum CO (≈1270 g).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!