Objective: Work-related musculoskeletal disorders (WRMSDs) are considered nowadays the most serious issue in the Occupational Health and Safety field and industrial exoskeletons appear to be a new approach to addressing this medical burden. A systematic review has been carried out to analyze the real-life data of the application of exoskeletons in work settings considering the subjective responses of workers.

Methods: The review was registered on PROSPERO. The literature search and its report have been performed following the PRISMA guidelines. A comprehensive literature search was performed in PubMed, EMBASE, Web of Science, and Scopus.

Results: Twenty-four original studies were included in the literature review; 42% of the papers retrieved included automobilist industry workers, 17% of the studies evaluated the use of exoskeletons in logistic facilities, and 17% of articles involved healthcare. The remaining six papers recruited farmers, plasterers, wasting collectors, construction workers, and other workmen. All the papers selected tested the use of passive exoskeletons, supporting upper arms or back. Usability, perceived comfort, perceived exertion and fatigue, acceptability and intention to use, occupational safety and health, and job performance and productivity were the main topic analyzed.

Conclusion: Exoskeletons are not a fix-all technology, neither for workers nor for job tasks; they tend to show more of their potential in static activities, while in dynamic tasks, they can obstacle regular job performance. Comfort and easiness of use are the key factors influencing the user's experience. More research is needed to determine the most effective and safe ways to implement exoskeleton use in occupational settings.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=275728, identifier CRD42021275728.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720272PMC
http://dx.doi.org/10.3389/fpubh.2022.1039680DOI Listing

Publication Analysis

Top Keywords

industrial exoskeletons
8
literature search
8
job performance
8
exoskeletons
5
exoskeletons bench
4
bench field
4
field human-machine
4
human-machine interface
4
interface user
4
user experience
4

Similar Publications

Novel Design on Knee Exoskeleton with Compliant Actuator for Post-Stroke Rehabilitation.

Sensors (Basel)

December 2024

Institute of Robotics, Autonomous System and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK.

Knee joint disorders pose a significant and growing challenge to global healthcare systems. Recent advancements in robotics, sensing technologies, and artificial intelligence have driven the development of robot-assisted therapies, reducing the physical burden on therapists and improving rehabilitation outcomes. This study presents a novel knee exoskeleton designed for safe and adaptive rehabilitation, specifically targeting bed-bound stroke patients to enable early intervention.

View Article and Find Full Text PDF

This study investigates the implementation of collaborative robots across three distinct industrial sectors: vehicle assembly, warehouse logistics, and agricultural operations. Through the SESTOSENSO project, an EU-funded initiative, we examined expert perspectives on human-robot collaboration using a mixed-methods approach. Data were collected from 31 technical experts across nine European countries through an online questionnaire combining qualitative assessments of specific use cases and quantitative measures of attitudes, trust, and safety perceptions.

View Article and Find Full Text PDF

Soft exoskeletons (exosuits) are expected to provide a comfortable wearing experience and compliant assistance compared with traditional rigid exoskeleton robots. In this paper, an exosuit with twisted string actuators (TSAs) is developed to provide high-strength and variable-stiffness actuation for hemiplegic patients. By formulating the analytic model of the TSA and decoding the human impedance characteristic, the human-exosuit coupled dynamic model is constructed.

View Article and Find Full Text PDF

Recent advances in modifications, biotechnology, and biomedical applications of chitosan-based materials: A review.

Int J Biol Macromol

December 2024

College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China. Electronic address:

Chitosan, a natural polysaccharide with recognized biocompatibility, non-toxicity, and cost-effectiveness, is primarily sourced from crustacean exoskeletons. Its inherent limitations such as poor water solubility, low thermal stability, and inadequate mechanical strength have hindered its widespread application. However, through modifications, chitosan can exhibit enhanced properties such as water solubility, antibacterial and antioxidant activities, adsorption capacity, and film-forming ability, opening up avenues for diverse applications.

View Article and Find Full Text PDF

This paper presents the design of the passive upper limb exosuit that won the design competition in the 2023 ASTM Exo Games. The tasks were first analyzed to provide information about the requirements of the design. Then a design was proposed based on the HeroWear Apex exosuit but with improvements from the competition team members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!