Carbon supported metallic nanomaterials are of great interest due to their low-cost, high durability and promising functional performance. Herein, a highly active oxygen evolution reaction (OER) electrocatalyst comprised of defective carbon shell encapsulated metal (Fe, Co, Ni) nanoparticles and their alloys supported on in-situ formed N-doped graphene/carbon nanotube hybrid is synthesized from novel single-source-precursors (SSP). The precursors are synthesized by a facile one-pot reaction of tannic acid with polyethylenimine and different metal ions and subsequent pyrolysis of the SSP. Benefiting from the heteroatom doping of carbon and formation of well-encapsulated metal/alloy nanoparticles, the obtained FeNi@NC-900 catalyst possesses lowest overpotentials of 310 mV to achieve a current density of 10 mA cm for OER with a small Tafel slope value of 45 mV dec , indicating excellent catalytic performance due to the following features: (1) A synergistic electronic effect among metal alloy nanoparticles, nitrogen-doped carbon, and entangled carbon nanotubes; (2) penetration of electrolyte is promoted towards the active sites through the porous structure of the formed mesoporous carbon clusters; (3) the unique core-shell nanostructure of the hybrid material effectively curbs the degradation of electrocatalyst by protecting the alloy nanoparticles from harsh electrolyte. This work advances an inexpensive and facile method towards the development of transition metal-based hybrid material for potential energy storage and conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202200338DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
8
alloy nanoparticles
8
hybrid material
8
carbon
6
single-source-precursor derived
4
derived transition
4
metal
4
transition metal
4
metal alloys
4
alloys embedded
4

Similar Publications

Efficient Catalysis for Zinc-Air Batteries by Multiwalled Carbon Nanotubes-Crosslinked Carbon Dodecahedra Embedded with Co-Fe Nanoparticles.

Small

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.

The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.

View Article and Find Full Text PDF

Graphene Supported NiFe-LDH and PbO Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction.

Materials (Basel)

December 2024

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.

View Article and Find Full Text PDF

Significantly Enhanced Acidic Oxygen Evolution Reaction Performance of RuO Nanoparticles by Introducing Oxygen Vacancy with Polytetrafluoroethylene.

Polymers (Basel)

December 2024

Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.

View Article and Find Full Text PDF

Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions.

View Article and Find Full Text PDF

Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!