Background: Nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy, the mechanism of which is involved in oxidative stress, can be lethal due to hemorrhage. Thus, we aimed to investigate the effect of hydrogen-rich water (HRW), in terms of oxidative stress, on intestinal mucosal damage as well as changes in the gut microbiome and the short-chain fatty acids (SCFAs) content in feces.

Methods: Hydrogen-rich water was orally administered for 5 days to investigate the effectiveness of indomethacin-induced enteropathy in mice. Small intestinal damage and luminal reactive oxygen species (ROS) were evaluated to investigate the ameliorating effects of hydrogen. Then, components of the gut microbiome were analyzed; fecal microbiota transplantation (FMT) was performed using the cecal contents obtained from mice drinking HRW. The cecal contents were analyzed for the SCFAs content. Finally, cells from the macrophage cell line RAW264 were co-cultured with the supernatants of cecal contents.

Results: Hydrogen-rich water significantly ameliorated IND-induced enteropathy histologically and reduced the expression of IND-induced inflammatory cytokines. Microscopic evaluation revealed that luminal ROS was significantly reduced and that HRW did not change the gut microbiota; however, FMT from HRW-treated animals ameliorated IND-induced enteropathy. The SCFA content in the cecal contents of HRW-treated animals was significantly higher than that in control animals. The supernatant had significantly increased interleukin-10 expression in RAW264 cells in vitro.

Conclusion: Hydrogen-rich water ameliorated NSAID-induced enteropathy, not only via direct antioxidant effects but also via anti-inflammatory effects by increasing luminal SCFAs. These results suggest that hydrogen may have therapeutic potential in small intestinal inflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734488PMC
http://dx.doi.org/10.1007/s10620-022-07781-5DOI Listing

Publication Analysis

Top Keywords

hydrogen-rich water
20
nsaid-induced enteropathy
12
cecal contents
12
short-chain fatty
8
fatty acids
8
oxidative stress
8
gut microbiome
8
scfas content
8
small intestinal
8
water ameliorated
8

Similar Publications

Molecular Hydrogen Modulates T Cell Differentiation and Enhances Neuro-Regeneration in a Vascular Dementia Mouse Model.

Antioxidants (Basel)

January 2025

Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Ansan 15355, Republic of Korea.

This study explores whether molecular hydrogen (H) administration can alleviate cognitive and immunological disturbances in a mouse model of vascular dementia (VaD). Adult male C57BL/6 mice underwent bilateral common carotid artery stenosis to induce VaD and were subsequently assigned to three groups: VaD, VaD with hydrogen-rich water treatment (VaD + H), and Sham controls. Behavioral assessments using open field and novel object recognition tests revealed that VaD mice exhibited anxiety-deficient behavior and memory impairment, both of which were reversed by H treatment.

View Article and Find Full Text PDF

Context: Metabolic disorders are a growing global concern, especially in developed countries, due to their increasing prevalence. Serum lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL), are commonly used clinical biomarkers for monitoring the progression of these metabolic abnormalities. In recent decades, hydrogen-rich water (HRW) has gained attention as a safe and effective treatment, with regulatory effects on lipid peroxidation and inflammatory responses in clinical trials.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model.

View Article and Find Full Text PDF

Oral Administration of Hydrogen-rich Water: Biomedical Activities, Potential Mechanisms, and Clinical Applications.

Curr Pharm Des

January 2025

Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.

Molecular hydrogen (H2) is considered a biological antioxidant. Hydrogen-rich Water (HRW) is regular water that contains dissolved H2 and has become more widely used in recent years. This review summarizes the basic research and clinical applications of HRW consumption to support its use for daily health and clinical treatment.

View Article and Find Full Text PDF

Evaluation of the therapeutic effects of nebulized inhalation of hydrogen-rich water on primary blast lung injury in C57BL/6 mice.

Surgery

January 2025

Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:

Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!