Purpose: Vasomotion is spontaneous oscillations in the diameter of resistance vessels with derived effects on blood flow, and it has been proposed that disturbances in vasomotion may be involved in retinal vascular disease. The purpose of this study was to investigate whether retinal vasomotion shows regional variation and is modified by activated autoregulation.
Methods: Video recordings of the diameter of retinal arterioles previously obtained from 55 normal persons were subjected to Fourier analysis to characterize the frequencies and propagation of spontaneous diameter changes in retinal arterioles. The analyses were performed on peripapillary temporal retinal arterioles, on arteriolar branches toward the macular area and the retinal periphery, and were performed during rest, during an increase in the arterial blood pressure induced by isometric exercise, and during increased retinal metabolism induced by flickering light.
Results: There was no propagation of diameter changes along the studied vascular segments. Isometric exercise constricted the arterioles significantly by (mean ± SD) 1.76% ± 3.56% (P = 0.02) and increased the power of diameter oscillations at very low frequencies (0.1-1.4 c/min). Flicker stimulation dilated the arterioles significantly by (mean ± SD) 5.10% ± 2.91% (P < 0.0001) and reduced the power of diameter oscillations at all but the very low frequencies (P < 0.006 for all comparisons). Flicker-induced dilation and changes in hydraulic conductance were lower in peripheral than in macular arterioles.
Conclusions: Retinal vasomotion in normal persons increases during increased arterial blood pressure and decreases during flicker stimulation. The findings may act as a basis for the study of vasomotion in retinal vascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733652 | PMC |
http://dx.doi.org/10.1167/iovs.63.13.7 | DOI Listing |
Int J Mol Sci
December 2024
Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.
Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Molecular and Clinical Ophthalmology Basel (IOB), Mittlere Strasse 91, 4031, Basel, Switzerland.
The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
Purpose: Previous in vitro studies on porcine retinal arterioles have shown that the frequency and amplitude of retinal vasomotion can be affected by hypoxia and nitric oxide (NO). However, it is unknown whether these effects can be reproduced in humans in vivo.
Methods: Video recordings of retinal arterioles from 40 healthy subjects were studied before and during breathing of a hypoxic gas mixture consisting of 12.
Microvasc Res
December 2024
Department of Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland; Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Background And Aims: Systemic sclerosis (SSc) is a systemic autoimmune disease, characterized by widespread microvasculopathy and fibrosis. Vascular and endothelial cell changes appear to precede other features of SSc. Retinal vascular analysis is a new, easy-to-use tool for the assessment of retinal microvascular function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Paris Cardiovascular Research Center, Université Paris Cité, Inserm U970, Paris F-75015, France.
The integrity of the blood-retina barrier (BRB) is crucial for phototransduction and vision, by tightly restricting transport of molecules between the blood and surrounding neuronal cells. Breakdown of the BRB leads to the development of retinal diseases. Here, we show that Netrin-1/Unc5b and Norrin/Lrp5 signaling establish a zonated endothelial cell gene expression program that controls BRB integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!