Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, a robust approach to improve the performance of a condition monitoring process in industrial plants by using Pythagorean membership grades is presented. The FCM algorithm is modified by using Pythagorean fuzzy sets, to obtain a new variant of it called Pythagorean Fuzzy C-Means (PyFCM). In addition, a kernel version of PyFCM (KPyFCM) is obtained in order to achieve greater separability among classes, and reduce classification errors. The approach proposed is validated using experimental datasets and the Tennessee Eastman (TE) process benchmark. The results are compared with the results obtained with other algorithms that use standard and non-standard membership grades. The highest performance obtained by the approach proposed indicate its feasibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202220200662 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!