Glioblastoma (GBM) is the most aggressive and common primary malignant brain tumor with limited available therapeutic approaches. Despite improvements in therapeutic options for GBM patients, efforts to develop new successful strategies remain as major unmet medical needs. Based on the cytotoxic properties of aporphine compounds, we evaluated the biological effect of 12 compounds obtained through total synthesis of ( ±)-apomorphine hydrochloride (APO) against GBM cells. The compounds 2,2,2-trifluoro-1-(1-methylene-3,4-dihydroisoquinolin-2(1H)-yl)ethenone (A5) and ( ±)-1-(10,11-dimethoxy-6a,7-dihydro-4H-dibenzo[de,g]quinolin-6(5H)-yl)ethenone (C1) reduced the viability of GBM cells, with 50% inhibitory concentration ranging from 18 to 48 μM in patient-derived GBM cultures. Our data show that APO, A5 or C1 modulate the expression of DNA damage and apoptotic markers, impair 3D-gliomasphere growth and reduce the expression of stemness markers. Potential activity and protein targets of A5, C1 or APO were predicted in silico based on PASS and SEA software. Dopamine receptors (DRD1 and 5), CYP2B6, CYP2C9 and ABCB1, whose transcripts were differentially expressed in the GBM cells, were among the potential A5 or C1 target proteins. Docking analyses (HQSAR and 3D-QSAR) were performed to characterize possible interactions of ABCB1 and CYP2C9 with the compounds. Notably, A5 or C1 treatment, but not temozolomide (TMZ), reduced significantly the levels of extracellular ATP, suggesting ABCB1 negative regulation, which was correlated with stronger cytotoxicity induced by the combination of TMZ with A5 or C1 on GBM cells. Hence, our data reveal a potential therapeutic application of A5 and C1 as cytotoxic agents against GBM cells and predicted molecular networks that can be further exploited to characterize the pharmacological effects of these isoquinoline-containing substances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729571 | PMC |
http://dx.doi.org/10.1038/s41598-022-25534-2 | DOI Listing |
Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University Boston Massachusetts USA.
Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Blood Transfusion, China-Japan, Union Hospital of Jilin University, Changchun, 130033, P.R. China.
Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, China.
Background: Glioblastoma multiforme (GBM) is the most aggressive brain tumor malignancy in adults, accounting for nearly 50% of all gliomas. Current medications for GBM frequently lead to drug resistance.
Objectives: Umbelliferone (UMB) is found extensively in many plants and shows numerous pharmacological actions against inflammation, degenerative diseases and cancers.
Neuro Oncol
January 2025
Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!