The gold standard for diagnosis of invasive fungal infections caused by filamentous fungi remains the visualization of fungal elements in fluids, and biopsy/tissue collected from a normally sterile body site. Parallel recovery of viable fungus from the sample subsequently permits antifungal susceptibility testing of the individual isolate. Central to both processes is the appropriate processing of tissue specimens to avoid damaging fungal elements and optimize viable organism recovery. Historically, mycologists have proposed that homogenization (grinding or bead-beating) of tissue should be avoided in cases of suspected fungal infection as it likely damages hyphae, instead preferring to chop tissue into small portions (dicing) for direct microscopic examination and culture. Here, we have compared the two processes directly on material from clinical patient cases of mucoromycosis and invasive aspergillosis. Representative portions of fresh biopsy samples were processed in parallel either by chopping (dicing) in the mycology reference laboratory or by bead-beating in the adjoining general microbiology laboratory. Aliquots of the samples were then cultured under identical conditions and subjected to direct microscopic examination. The results demonstrated that tissue homogenization significantly reduced (i) organism recovery rates in cases of both mucoromycosis and invasive aspergillosis and (ii) the number of fungal elements detectable upon direct microscopic examination. To our knowledge, this is the first study to directly compare these alternative processing methods and despite only employing a limited number of samples the data presented here, provide support for the perceived mycological wisdom that homogenization of tissue samples should be avoided when filamentous fungal infections are suspected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mmy/myac081 | DOI Listing |
J Cutan Pathol
January 2025
Department of Dermatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
ACS Sens
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MDMaastricht, The Netherlands.
Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.
View Article and Find Full Text PDFSisli Etfal Hastan Tip Bul
December 2024
Department of Neurosurgery, Yeditepe University Faculty of Medicine, Istanbul, Türkiye.
Objectives: To describe a novel technique for dissecting cadaver brains without damaging medial brain structures and surfaces, ensuring preservation for neuroanatomical study and training.
Methods: Ten adult cadaveric brains were dissected using the supracerebellar suprapineal approach under an operative microscope with 6x to 40x magnification. This approach allowed for the separation of the brain into two hemispheres while providing direct visualization of the third ventricle and preserving midline structures.
J Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFData Brief
February 2025
Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.
The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!