A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. | LitMetric

Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve.

Cell Rep

Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK. Electronic address:

Published: December 2022

Successful neuronal regeneration requires the reestablishment of synaptic connectivity. This process requires the reconstitution of presynaptic neurotransmitter release, which we investigate here in a model of entirely natural regeneration. After toxin-induced injury, olfactory sensory neurons in the adult mouse olfactory epithelium can regenerate fully, sending axons via the olfactory nerve to reestablish synaptic contact with postsynaptic partners in the olfactory bulb. Using electrophysiological recordings in acute slices, we find that, after initial recontact, functional connectivity in this system is rapidly established. Reconnecting presynaptic terminals have almost mature functional properties, including high release probability and strong capacity for presynaptic inhibition. Release probability then matures quickly, rendering reestablished terminals functionally indistinguishable from controls just 1 week after initial contact. These data show that successful synaptic regeneration in the adult mammalian brain is almost a "plug-and-play" process, with presynaptic terminals undergoing a rapid phase of functional maturation as they reintegrate into target networks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.111750DOI Listing

Publication Analysis

Top Keywords

adult mouse
8
mouse olfactory
8
olfactory nerve
8
presynaptic terminals
8
release probability
8
olfactory
5
rapid presynaptic
4
presynaptic maturation
4
maturation naturally
4
naturally regenerating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!