In type 2 diabetes mellitus (T2DM) patients, chronic hyperglycemia and inflammation underlie susceptibility to tuberculosis (TB) and result in poor TB control. Here, an integrative pathway-based approach is used to investigate perturbed pathways in T2DM patients that render susceptibility to TB. We obtained 36 genes implicated in type 2 diabetes-associated tuberculosis (T2DMTB) from the literature. Gene expression analysis on T2DM patient data (GSE26168) showed that DEFA1 is differentially expressed at P <0.05. The human host TB susceptibility genes TNFRSF10A, MSRA, GPR148, SLC37A3, PXK, PROK2, REV3L, PGM1, HIST3H2A, PLAC4, LETM2, and EMP2 and hsa-miR-146a microRNA were also differentially expressed at P <0.05. We included all these genes and added the remaining 28 genes from the T2DMTB set and the remaining differentially expressed genes at P <0.05 in STRING and obtained a well-connected network with high confidence score (≥0.7). Further, we extracted the KEGG pathways at FDR <0.05 and retained only the diabetes and TB pathways. The network was simulated with BioNSi using gene expression data. It is evident from BioNSi analysis that the NF-kappa B and Toll-like receptor pathways are commonly perturbed with high ranking in multiple gene expression datasets of type 2 diabetes versus healthy controls. The other pathways, necroptosis pathway and FoxO signalling pathway, appear perturbed with high ranking in different gene expression datasets. These pathways likely underlie susceptibility to TB in T2DM patients.

Download full-text PDF

Source

Publication Analysis

Top Keywords

perturbed pathways
8
susceptibility tuberculosis
8
type diabetes
8
diabetes mellitus
8
t2dm patients
8
identification perturbed
4
pathways rendering
4
rendering susceptibility
4
tuberculosis type
4
mellitus patients
4

Similar Publications

Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.

View Article and Find Full Text PDF

Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).

View Article and Find Full Text PDF

Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!