Metal-promoted synthesis of steroidal ethynyl selenides having anticancer activity.

J Steroid Biochem Mol Biol

Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1 K, 15-245 Białystok, Poland. Electronic address:

Published: March 2023

In this study, we have described simple and efficient methodology for the metal-promoted (CuI) preparation of steroidal ethynyl selenides. The compounds were characterized using H, C and Se NMR, FT IR spectroscopy, and MS analysis. A proposed mechanism of the metal-promoted reaction involves the formation of a σ-bound copper acetylide. Due to the fact that organoselenium-based compounds possess a pleiotropic properties and associated with their promising biological activities, in the next step of the study biocompatibility and anticancer activity of the synthesized compounds was evaluated. Steroidal selenides were tested in vitro against estrogen-depend breast cancer cells MCF-7 using spectrophotometric, fluorometric and luminometric methods. Designed selenides showed high hemocompatibility, lack of toxicity against cardiomyocytes cell and great anti-cancer activity in vitro against estrogen-depend breast cancer cells upon 24 h of treatment. We revealed that selenides decrease the viability and proliferation ability of MCF-7 cells by induction of cell apoptosis. It has been noted that the overproduction of reactive oxygen species (ROS) and associated with its activation of Caspase 3/7 are a major mechanism that is responsible of selenides-caused cell death. These data indicate that organoselenium based compounds have great antineoplastic potential and might be developed as novel class of agents dedicated to the breast-cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2022.106232DOI Listing

Publication Analysis

Top Keywords

steroidal ethynyl
8
ethynyl selenides
8
anticancer activity
8
vitro estrogen-depend
8
estrogen-depend breast
8
breast cancer
8
cancer cells
8
selenides
5
metal-promoted synthesis
4
synthesis steroidal
4

Similar Publications

Nuclear Receptor Subfamily 4 Group A Member 3: A Potential Marker of Endometriosis.

Discov Med

December 2024

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 610017 Chengdu, Sichuan, China.

Background: Nuclear receptor subfamily 4 group A member 3 () is lowly expressed in ectopic endometrium and can be degraded by ubiquitination in vascular endothelial cells. Murine double minute 2 () is predicted to be the ubiquitin ligase of . Hence, we investigated the effects of and on endometriosis and clarified corresponding regulatory mechanisms.

View Article and Find Full Text PDF

MiRNAs are typically reported to play a negative regulatory role in post-transcriptional expression of target genes and are widely involved in a variety of biological processes such as growth, metabolism and reproduction. However, research on the role of miRNAs in the ovulation process of chicken ovaries is still insufficient compared to that in mammals. Here, we investigated the regulatory mechanisms of gga-miR-6634-5p in the growth and steroid hormone secretion of chicken granulosa cells (GCs) by targeting MMP16.

View Article and Find Full Text PDF
Article Synopsis
  • - Niemann-Pick disease Type C (NPC) is linked to mutations in the NPC1 protein that disrupt cholesterol transport, leading to lipid buildup and psychiatric problems.
  • - In an NPC mouse model, researchers discovered that mGluR (metabotropic glutamate receptors) accumulate abnormally inside cells, affecting their function and leading to changes in long-term depression (a form of synaptic plasticity).
  • - Treatment with the mGluR antagonist CTEP lowered mGluR-related issues and improved psychiatric symptoms, suggesting alterations in mGluR play a role in NPC and offering potential new therapies for affected individuals.
View Article and Find Full Text PDF

IGF2/IGFBP4 reduces apoptosis and increases free cholesterol of chicken granulosa cells in vitro.

Poult Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China. Electronic address:

Follicle selection, a crucial step in maintaining continuous egg production in chickens, is a process that relies on granulosa cells (GCs). In this study, we aimed to identify the key genes that are involved in follicle selection from our previous single-cell transcriptomic data. We used a combination of techniques and assays, including quantitative real-time PCR, immunofluorescence, Oil Red O staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), monodansylcadaverine (MDC) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cell counting Kit-8 (CCK-8) assay, and 5-ethynyl-2-deoxyuridine (EdU) assay.

View Article and Find Full Text PDF

Intramammary Labeling of Epithelial Cell Division.

J Mammary Gland Biol Neoplasia

October 2024

Department of Animal Science, University of California, Davis One Shields Avenue, Davis, CA, 95616-8521, USA.

Thymidine analogs such as ethynyl deoxyuridine (EdU) or bromodeoxyuridine (BrdU) can be used to label mitosis of mammary epithelial cells (MEC) and to quantify their proliferation. However, labeling cells in larger animals requires considerable amounts of chemical that can be costly and hazardous. We developed a strategy to infuse EdU into the mammary glands of ewes to directly label mitotic MEC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!