In this study, we have described simple and efficient methodology for the metal-promoted (CuI) preparation of steroidal ethynyl selenides. The compounds were characterized using H, C and Se NMR, FT IR spectroscopy, and MS analysis. A proposed mechanism of the metal-promoted reaction involves the formation of a σ-bound copper acetylide. Due to the fact that organoselenium-based compounds possess a pleiotropic properties and associated with their promising biological activities, in the next step of the study biocompatibility and anticancer activity of the synthesized compounds was evaluated. Steroidal selenides were tested in vitro against estrogen-depend breast cancer cells MCF-7 using spectrophotometric, fluorometric and luminometric methods. Designed selenides showed high hemocompatibility, lack of toxicity against cardiomyocytes cell and great anti-cancer activity in vitro against estrogen-depend breast cancer cells upon 24 h of treatment. We revealed that selenides decrease the viability and proliferation ability of MCF-7 cells by induction of cell apoptosis. It has been noted that the overproduction of reactive oxygen species (ROS) and associated with its activation of Caspase 3/7 are a major mechanism that is responsible of selenides-caused cell death. These data indicate that organoselenium based compounds have great antineoplastic potential and might be developed as novel class of agents dedicated to the breast-cancer therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2022.106232 | DOI Listing |
Discov Med
December 2024
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 610017 Chengdu, Sichuan, China.
Background: Nuclear receptor subfamily 4 group A member 3 () is lowly expressed in ectopic endometrium and can be degraded by ubiquitination in vascular endothelial cells. Murine double minute 2 () is predicted to be the ubiquitin ligase of . Hence, we investigated the effects of and on endometriosis and clarified corresponding regulatory mechanisms.
View Article and Find Full Text PDFPoult Sci
December 2024
College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China. Electronic address:
MiRNAs are typically reported to play a negative regulatory role in post-transcriptional expression of target genes and are widely involved in a variety of biological processes such as growth, metabolism and reproduction. However, research on the role of miRNAs in the ovulation process of chicken ovaries is still insufficient compared to that in mammals. Here, we investigated the regulatory mechanisms of gga-miR-6634-5p in the growth and steroid hormone secretion of chicken granulosa cells (GCs) by targeting MMP16.
View Article and Find Full Text PDFCell Death Dis
October 2024
Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
Poult Sci
December 2024
State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China. Electronic address:
Follicle selection, a crucial step in maintaining continuous egg production in chickens, is a process that relies on granulosa cells (GCs). In this study, we aimed to identify the key genes that are involved in follicle selection from our previous single-cell transcriptomic data. We used a combination of techniques and assays, including quantitative real-time PCR, immunofluorescence, Oil Red O staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), monodansylcadaverine (MDC) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cell counting Kit-8 (CCK-8) assay, and 5-ethynyl-2-deoxyuridine (EdU) assay.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
October 2024
Department of Animal Science, University of California, Davis One Shields Avenue, Davis, CA, 95616-8521, USA.
Thymidine analogs such as ethynyl deoxyuridine (EdU) or bromodeoxyuridine (BrdU) can be used to label mitosis of mammary epithelial cells (MEC) and to quantify their proliferation. However, labeling cells in larger animals requires considerable amounts of chemical that can be costly and hazardous. We developed a strategy to infuse EdU into the mammary glands of ewes to directly label mitotic MEC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!