PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing.

Mol Cell

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address:

Published: December 2022

PALI1 is a newly identified accessory protein of the Polycomb repressive complex 2 (PRC2) that catalyzes H3K27 methylation. However, the roles of PALI1 in cancer are yet to be defined. Here, we report that PALI1 is upregulated in advanced prostate cancer (PCa) and competes with JARID2 for binding to the PRC2 core subunit SUZ12. PALI1 further interacts with the H3K9 methyltransferase G9A, bridging the formation of a unique G9A-PALI1-PRC2 super-complex that occupies a subset of G9A-target genes to mediate dual H3K9/K27 methylation and gene repression. Many of these genes are developmental regulators required for cell differentiation, and their loss in PCa predicts poor prognosis. Accordingly, PALI1 and G9A drive PCa cell proliferation and invasion in vitro and xenograft tumor growth in vivo. Collectively, our study shows that PALI1 harnesses two central epigenetic mechanisms to suppress cellular differentiation and promote tumorigenesis, which can be targeted by dual EZH2 and G9A inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812274PMC
http://dx.doi.org/10.1016/j.molcel.2022.11.010DOI Listing

Publication Analysis

Top Keywords

tumor growth
8
pali1
7
pali1 promotes
4
promotes tumor
4
growth competitive
4
competitive recruitment
4
recruitment prc2
4
prc2 g9a-target
4
g9a-target chromatin
4
chromatin dual
4

Similar Publications

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

The formation of gastric precancerous-lesions (GPLs) has been identified as a critical step in tumorigenesis, and patients with GPLs have an increased risk of gastric cancer. Magnolol is the primary biphenolic compound in Magnolia officinalis. It possesses various pharmacological properties, such as cardioprotective and neuroprotective properties, and inhibit tumor growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!