Background: Altered glycolysis is the most fundamental metabolic change associated with the Warburg effect. Some glycolytic enzymes such as PKM2, the dominant pyruvate kinase in cancer cells, have been shown to engage in non-glycolytic functions that contribute to tumor metabolism. However, the precise mechanisms are not completely understood.
Methods: The role of MNX1-AS1 in hepatocellular carcinoma progression was assessed both in vitro and in vivo. Northern blotting, RNA pulldown, mass spectrometry, RNA-binding protein immunoprecipitation, ChIP, luciferase reporter assays, RNA FISH and immunofluorescence staining were used to explore the detail molecular mechanism of MNX1-AS1 in hepatocellular carcinoma (HCC).
Results: Here we dissect how MNX1-AS1, a long non-coding RNA (lncRNA), reinforces the Warburg effect through facilitating the non-glycolytic actions of PKM2 in the cell nucleus. We found that MNX1-AS1 expression was frequently overexpressed in HCC-derived cell lines and tissues compared to their normal hepatic cell counterparts, a finding consistent with its status as pan-cancer expressed lncRNA. In the context of HCC, we show MNX1-AS1 acts as a scaffold to promote interactions between PKM2 and importin α5. In response to EGFR activation, the resulting ternary complex drives the translocation of PKM2 into the nucleus. In consequence, glycolytic pathway components including key mediators of the Warburg effect (LDHA, GLUT1 and PDK1) are upregulated though the coactivator function of PKM2. Manipulating MNX1-AS1 elicited robust effects on glycolysis associated with marked changes in HCC growth in vitro and in xenograft models, indicative of the significant contribution of MNX1-AS1 to tumorigenic phenotypes. Moreover, while MNX1-AS1 expression is driven by c-Myc, its actions associated with PKM2 were shown to be downstream and independent of c-Myc.
Conclusions: Given the status of MNX1-AS1 as a pan-cancer upregulated lncRNA, this implicitly highlights the potential of targeting MNX1-AS1 to selectively counter the Warburg effect in a range of tumor types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727912 | PMC |
http://dx.doi.org/10.1186/s13046-022-02547-3 | DOI Listing |
Genes Chromosomes Cancer
November 2024
Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
World J Surg Oncol
July 2024
Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
Biomedicines
April 2024
Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic.
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis.
View Article and Find Full Text PDFThe following articles: - "Long non-coding RNA MNX1-AS1 promoted osteosarcoma proliferation and invasion via inhibiting KISS1" by Y.-X. Zhang, H.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
December 2023
Cancer Treatment Center, Baoying People's Hospital, Yangzhou, China.
To clarify the role of MNX1-AS1 in 5-FU resistance of Colorectal carcinoma (CRC). Relative levels of MNX1-AS1 in CRC and paracancerous tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Recruited CRC patients were treated by 5-FU-based FOLFOX chemotherapy, and they were divided to effective group and non-effective group according to the therapeutic efficacy, followed by comparison of their differences in clinical indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!