The widespread use of silver nanoparticles (AgNPs) requires a study of their safety. The aim of the present study was to assess the levels of oxidative stress markers and histopathological changes in the experimental model of sarcoma S-180 of outbred mice caused by biogenic AgNPs. AgNPs were synthesized using 50% ethanol extract of leaves that was standardized for rosmarinic acid content. The effects of AgNPs were tested on chemiluminescence (ChL), malonic dialdehyde (MDA) content and activity of superoxide dismutase (SOD) in healthy and experimental model of sarcoma S-180 mice. It was shown that, under the influence of AgNPs, the intensity of ChL decreased, in contrast with control groups (with the exception of the hepatocytes of animals with transplanted sarcoma). The presence of AgNPs leads to the decrease of MDA in the tissues of healthy mice and to a slight increase of MDA content in the tumour and kidney tissues. AgNPs neutralize the activity of SOD in kidney tissue samples in animals with transplanted sarcoma, and in tumour tissue, they reduce SOD activity by three times. The results of the histological analysis indicate that AgNPs not only cause the destruction of tumour tissue but also lead to structural changes in hepatocytes and nephrons, which can affect the function of these organs. AgNPs are potential agents for antitumor therapy. Future studies are needed using biocompatible non-toxic NPs that meet the requirement for these drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2022.2149931DOI Listing

Publication Analysis

Top Keywords

agnps
9
oxidative stress
8
histopathological changes
8
silver nanoparticles
8
experimental model
8
model sarcoma
8
sarcoma s-180
8
mda content
8
animals transplanted
8
transplanted sarcoma
8

Similar Publications

Microfluidic-SERS platform with in-situ nanoparticle synthesis for rapid E. coli detection in food.

Food Chem

January 2025

China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom. Electronic address:

A microfluidic-surface enhanced Raman spectroscopy (SERS) platform for rapid detection of Escherichia coli in food products is proposed. By implementing a Y-junction serpentine microfluidic channel, we achieved in-situ synthesis of silver nanoparticles (AgNPs), for enhancing SERS signal intensity. The synthesis of AgNPs was guided by specific aptamers bound to the bacterial cell, which facilitated formation of nanoparticles.

View Article and Find Full Text PDF

Study on the role of mitophagy and pyroptosis induced by nano-silver in testicular injury.

Food Chem Toxicol

January 2025

School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, 563000, PR China. Electronic address:

Silver nanoparticles(AgNPs)have been widely used in biomedicine and industry. Growing studies have shown that AgNPs can induce sperm motility decrease and spermiogenesis disorders. In this study, animal experiments were used to investigate the role of mitophagy and pyroptosis caused by AgNPs (25.

View Article and Find Full Text PDF

Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China. Electronic address:

In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping.

View Article and Find Full Text PDF

In the fast-paced quest for early cancer detection, noninvasive screening techniques have emerged as game-changers, offering simple and accessible avenues for precession diagnostics. In line with this, our study highlights the potential of silver nanoparticle-decorated titanium carbide MXene nanosheets (TiC_AgNPs) as an electroactive interface for the noninvasive diagnosis of oral carcinoma based on the prevalence of the salivary biomarker, tumor necrosis factor-α (TNF-α). An in situ reduction was utilized to synthesize the TiC_AgNPs nanohybrid, wherein TiC acts as the reducing agent, and the resulting nanohybrid was subjected to various characterization techniques to examine the optical, structural, and morphological attributes.

View Article and Find Full Text PDF

Background: The increasing prevalence of antibiotic-resistant bacteria necessitates exploring nanotechnology as a potential solution for microbial elimination.

Objectives: This study aimed to investigate the antimicrobial and antioxidant effects of silver nanoparticles synthesized using aqueous extract from the Ephedra gerardiana (E. gerardiana) plant (EG@AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!