Glycosylation of small molecules can significantly improve their physicochemical and biological properties. Only recently, decisive improvements in the biotechnological production of small-molecule glucosides (SMGs) have resulted in a large number of these compounds now being commercially available. In this study, we have analyzed a number of physical, chemical, and biological parameters of 31 SMGs, including solubility, stability, melting and pyrolysis points, partition coefficient log , minimum inhibitory concentration against (MIC), and enzymatic degradability. The properties such as water solubility, pH stability, and MICs of the glycosides were strongly dependent on the structures of the respective aglycones, which is why the SMG clustered according to their aglycones in most cases. Phenolic and furanone glucosides were readily hydrolyzed by saliva and skin microflora, whereas monoterpenol glycosides were poorer substrates for the enzymes involved. The results of this comparative analysis of SMGs provide valuable information for elucidating the biological functions of SMGs and the future technological applications of these useful natural products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c07312DOI Listing

Publication Analysis

Top Keywords

small-molecule glucosides
8
solubility stability
8
comparative physicochemical
4
physicochemical biochemical
4
biochemical characterization
4
characterization small-molecule
4
glucosides glycosylation
4
glycosylation small
4
small molecules
4
molecules improve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!