The atropselective iodination of 2-amino-6-arylpyridines catalyzed by chiral disulfonimides (DSIs) is described. Key to the development of this transformation was the use of a chemoinformatically guided workflow for the curation of a structurally diverse training set of DSI catalysts. Utilization of this catalyst training set in the atropselective iodination across a variety 2-aminopyridine substrates allowed for the recommendation of statistically higher-performing DSIs for this reaction. Data Fusion techniques were implemented to successfully predict the performance of catalysts when classical linear regression analysis failed to provide suitable models. This effort identified a privileged class of 3,3'-alkynyl-DSI catalysts which were effective in catalyzing the iodination of a variety of 2-amino-6-arylpyridines with high stereoselectivity and generality. Subsequent preparative-scale demonstrations highlighted the utility of this reaction by providing iodinated pyridines >90:10 er and in good chemical yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c08820 | DOI Listing |
J Am Chem Soc
December 2022
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States.
The atropselective iodination of 2-amino-6-arylpyridines catalyzed by chiral disulfonimides (DSIs) is described. Key to the development of this transformation was the use of a chemoinformatically guided workflow for the curation of a structurally diverse training set of DSI catalysts. Utilization of this catalyst training set in the atropselective iodination across a variety 2-aminopyridine substrates allowed for the recommendation of statistically higher-performing DSIs for this reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!