The formation and accumulation of unfolded, misfolded, or damaged cellular proteins leads to development of endoplasmic reticulum stress (ER stress). A series of protective reactions is initiated in response to ER stress. These reactions are aimed at restoring the balance between protein synthesis and degradation, which is key to maintaining protein homeostasis (proteostasis). The main protective mechanisms are the attenuation of protein synthesis, increase of chaperone levels, and activation of protein degradation systems. Insufficiency or malfunction of these mechanisms induce apoptosis. Proteostasis dysregulation accompanied by protein aggregation and subsequent cell death in specific regions of the nervous system is a common pathogenetic hallmark of most neurodegenerative diseases. We discuss targeted regulation of the ER stress signaling pathways as a potential therapeutic strategy that can slow or even halt the disease progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31857/S0026898422060143 | DOI Listing |
Physiol Rep
February 2025
Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFJBMR Plus
February 2025
Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.
Hypophosphatemic rickets is a rare bone disease characterized by short stature, bone deformities, impaired bone mineralization, and dental problems. Most commonly, hypophosphatemic rickets is caused by pathogenic variants in the X-chromosomal gene, but autosomal dominant and recessive forms also exist. We investigated a Finnish family in which the son (index, 29 yr) and mother (56 yr) had hypophosphatemia since childhood.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China.
Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).
Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.
Front Pharmacol
January 2025
Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.
5-Lipoxygenase (5-LO), encoded by the gene , is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases gene promoter activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!