[CRISPR Interference in Regulation of Bacterial Gene Expression].

Mol Biol (Mosk)

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology," Russian Academy of Sciences, Moscow, 119071 Russia.

Published: December 2022

The review is devoted to the use of the CRISPR/Cas system for obtaining knockdowns of target bacterial genes by CRISPR-mediated interference (CRISPRi). CRISPRi is based on the preservation of the ability of the inactivated dCas nuclease in complex with guide RNA to bind a target, which leads to reversible repression of the selected genes. The review describes the principle of operation of CRISPR/Cas and CRIS-PRi/dCas and provides examples of various approaches to the use of CRISPRi with the most popular inactivated nucleases dCas9 and dCas12a. Also, attention is paid to the use of CRISPRi screening for genome-wide studies and the modular system for identifying many important patterns at the Mobile-CRISPRi genome level. In addition, we discuss the use of CRISPRi to optimize biotechnological production, such as the synthesis of malonyl-CoA, L-lysine, L-glutamate, and other significant products.

Download full-text PDF

Source
http://dx.doi.org/10.31857/S0026898422060167DOI Listing

Publication Analysis

Top Keywords

crispri
5
[crispr interference
4
interference regulation
4
regulation bacterial
4
bacterial gene
4
gene expression]
4
expression] review
4
review devoted
4
devoted crispr/cas
4
crispr/cas system
4

Similar Publications

Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.

View Article and Find Full Text PDF

Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in sp. SE50/110 Using CRISPRi Silencing.

Microorganisms

December 2024

Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany.

Acarbose, a pseudo-tetrasaccharide produced by sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation.

View Article and Find Full Text PDF

Enhancing High-Level Food-Grade Expression of Glutamate Decarboxylase and Its Application in the Production of γ-Aminobutyric Acid.

J Microbiol Biotechnol

December 2024

School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China.

Gamma-aminobutyric acid (GABA), a non-proteinogenic amino acid, exhibits diverse physiological functions and finds extensive applications in food, medicine, and various industries. Glutamate decarboxylase (GAD) can effectively convert L-glutamic acid (L-Glu) or monosodium glutamate (MSG) into GABA. However, the low food-grade expression of GAD has hindered large-scale GABA production.

View Article and Find Full Text PDF

Zymomonas mobilis: bringing an ancient human tool into the genomic era.

Curr Opin Biotechnol

January 2025

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Zymomonas mobilis is an ethanologenic bacterium that has been used for over 1500 years to produce alcoholic beverages. Recently, this microbe has become a top candidate for biofuel production due to its efficient metabolism. Z.

View Article and Find Full Text PDF

Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!