Background: Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases.
Objective: This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors.
Results And Conclusion: Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389450124666221207090108 | DOI Listing |
Sci Rep
January 2025
The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Department of Pharmacy, Guru Ghasidas University, Bilaspur, India.
Introduction: The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential.
Areas Covered: The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.
J Med Chem
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education; Jiangxi Provincal Key Laboratory of Tissue Engineering; College of Pharmacy, Gannan Medical University, Ganzhou 314000, China.
Histone deacetylase 3 (HDAC3) is a well-established target for cancer therapy. Herein, we developed as a novel HDAC3 inhibitor, which exhibited high HDAC3 inhibitory activity (IC = 42 nM, SI > 161) and displayed potent antiproliferative activity against four cancer cells and further demonstrated excellent antimigratory, anti-invasive, and antiwound healing activities. Further studies revealed that induced a dose-dependent increase in Ac-H3 expression and promoted the degradation of PD-L1.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!