Objective: To evaluate the feasibility of Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy to detect cartilage degradation due to osteoarthritis and to validate the methodology with osteochondral human cartilage samples for future development towards clinical use.

Design: Cylindrical ( ​= ​4 ​mm) osteochondral samples ( ​= ​349) were prepared from nine human cadavers and measured with FTIR-ATR spectroscopy. Afterwards, the samples were assessed with Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology assessment system and divided into two groups: 1) healthy (OARSI 0-2) and 2) osteoarthritic (OARSI 2.5-6). The classification was done with partial least squares discriminant analysis model utilizing cross-model validation. Receiver operating characteristics curve analysis was performed and the area under curve (AUC) was calculated.

Results: For all samples combined, classification accuracy was 73% with AUC of 0.79. Femoral samples had accuracy of 74% and AUC of 0.77, while tibial samples had accuracy of 66%, and AUC of 0.74. Patellar samples had accuracy of 84% and AUC of 0.91.

Conclusions: The results indicate that FTIR-ATR spectroscopy can differentiate between healthy and osteoarthritic femoral, tibial and patellar human tissue. If combined with a fiber optic probe, FTIR-ATR spectroscopy could provide additional objective intraoperative information during arthroscopic surgeries, which could improve clinical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718336PMC
http://dx.doi.org/10.1016/j.ocarto.2022.100250DOI Listing

Publication Analysis

Top Keywords

ftir-atr spectroscopy
16
samples accuracy
12
samples
7
auc
5
infrared spectroscopy
4
spectroscopy suitable
4
suitable objective
4
objective assessment
4
assessment articular
4
cartilage
4

Similar Publications

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Murray (GMLR) and L. (GMLB).

View Article and Find Full Text PDF

Cellulose tosylate (MCC-Tos) is a key derivative for surface modification and a crucial precursor for cellulose compatibilization in click reactions, enabling its functionalization for advanced applications. Replacing tosyl groups with alkyne groups broadens cellulose's potential in biocompatible reactions, such as thiol-yne click chemistry and protein/enzyme immobilization. To achieve this, we optimized the heterogeneous synthesis of MCC-Tos using a Doehlert matrix statistical design, evaluating the influence and interaction of the reaction conditions.

View Article and Find Full Text PDF

Background: Peri-implantitis is characterized as a pathological change in the tissues around dental implants. Fourier-transform infrared spectroscopy (FTIR) provides molecular information from optical phenomena observed by the vibration of molecules, which is used in biological studies to characterize changes and serves as a form of diagnosis.

Aims: this case-control study evaluated the peri-implant disease by using FTIR spectroscopy with attenuated total reflectance in the fingerprint region.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!