Atomic Ruthenium-Riveted Metal-Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium-Oxygen Batteries.

J Am Chem Soc

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin300071, China.

Published: December 2022

Non-aqueous Li-O batteries have aroused considerable attention because of their ultrahigh theoretical energy density, but they are severely hindered by slow cathode reaction kinetics and large overvoltages, which are closely associated with the discharge product of LiO. Herein, hexagonal conductive metal-organic framework nanowire arrays of nickel-hexaiminotriphenylene (Ni-HTP) with quadrilateral Ni-N units are synthesized to incorporate Ru atoms into its skeleton for NiRu-HTP. The atomically dispersed Ru-N sites manifest strong adsorption for the LiO intermediate owing to its tunable d-band center, leading to its high local concentration around NiRu-HTP. This favors the formation of film-like LiO on NiRu-HTP with promoted electron transfer and ion diffusion across the cathode-electrolyte interface, facilitating its reversible decomposition during charge. These allow the Li-O battery with NiRu-HTP to deliver a remarkably reduced charge/discharge polarization of 0.76 V and excellent cyclability. This work will enrich the design philosophy of electrocatalysts for regulation of kinetic behaviors of oxygen redox.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c11676DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
tunable d-band
8
oxygen redox
8
atomic ruthenium-riveted
4
ruthenium-riveted metal-organic
4
framework tunable
4
d-band modulates
4
modulates oxygen
4
redox lithium-oxygen
4
lithium-oxygen batteries
4

Similar Publications

Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.

View Article and Find Full Text PDF

Supercapacitors (SCs) are gaining attention in energy storage due to their high-power density, rapid charge/discharge ability, and long life cycle. Improving these features relies on developing advanced electrode materials with better energy storage properties. This study explores UiO-66, a zirconium-based metal-organic framework (MOF), which offers advantages like a large surface area, tunable pore sizes, and stability.

View Article and Find Full Text PDF

Total antioxidant capacity (TAC) is an important indicator for assessing the merit of natural plants and foods. Herein, a visual TAC assay is developed based on the oxidase-like activity of nitrogen-doped carbon nanotubes loaded with Fe nanoparticles (FeNPs@NCNT), which is prepared via high-temperature pyrolysis of metal-organic framework precursors and can catalyze the oxidation of colorless -phenylenediamine (OPD) to colored 2,3-diaminophenazine (DAP). The addition of antioxidants (e.

View Article and Find Full Text PDF

Conformation Regulation of Perylene Diimide Derivatives by Lanthanide Coordination for Turn-On Fluorescence Sensing of Sarin Simulants.

Inorg Chem

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials that have received much attention in recent years, in which the organic ligand conformation changes usually lead to variations of their sensing behavior. Based on this, in the present work, perylene diimide (PDI) derivatives with excellent photochemical properties closely related to their conformation and molecule packing fashion were selected as organic linkers to detect sarin simulant diethyl chlorophosphate (DCP). By the coordination interactions with large lanthanide cations through terminal carboxylate groups from the PDI derivative, a series of one-dimensional coordination polymers, named [Ln(PDICl-2COO)(μ-O)(DMF)] (SNNU-112, Ln = Yb/Tb/Sm/Nd/Pr/Gd/Eu/Er/Ce, PDICl-2COOH = ,'-bis(4-benzoic acid)-1,2,6,7-tetrachlorohydrazone-3,4,9,10-tetracarboxylic acid diimide) were synthesized.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!