R2R3 MYB transcription factor GhMYB18 is involved in the defense response to cotton aphid by participating in the synthesis of salicylic acid and flavonoids. R2R3 MYB transcription factors (TFs) play crucial roles in plant growth and development as well as response to abiotic and biotic stresses. However, the mechanism of R2R3 MYB TFs in cotton response to aphid infestation remains largely unknown. Here, an R2R3 MYB transcription factor GhMYB18 was identified as a gene up-regulated from upland cotton (Gossypium hirsutum L.) under cotton aphid (Aphis gossypii Glover) infestation. GhMYB18, which has transcription activity, was localized mainly to nucleus and cell membranes. Transient overexpression of GhMYB18 in cotton activates salicylic acid (SA) and phenylpropane signaling pathways and promoted the synthesis of salicylic acid and flavonoids, which leads to enhancing the tolerance to cotton aphid feeding. In contrast, silencing of GhMYB18 increased the susceptibility of G. hirsutum to aphid. Additionally, GhMYB18 significantly promoted the activities of defense-related enzymes including catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL). These results collectively suggest that GhMYB18 is involved in cotton defense response to cotton aphid attacks through regulating the synthesis of salicylic acid and flavonoids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-022-02961-zDOI Listing

Publication Analysis

Top Keywords

salicylic acid
20
synthesis salicylic
16
acid flavonoids
16
r2r3 myb
16
cotton aphid
16
myb transcription
12
cotton
9
ghmyb18
8
aphis gossypii
8
gossypii glover
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!