Chloride homeostasis is regulated in all cellular compartments. CLC-type channels selectively transport Cl across biological membranes. It is proposed that side-chains of pore-lining residues determine Cl selectivity in CLC-type channels, but their spatial orientation and contributions to selectivity are not conserved. This suggests a possible role for mainchain amides in selectivity. We use nonsense suppression to insert α-hydroxy acids at pore-lining positions in two CLC-type channels, CLC-0 and bCLC-k, thus exchanging peptide-bond amides with ester-bond oxygens which are incapable of hydrogen-bonding. Backbone substitutions functionally degrade inter-anion discrimination in a site-specific manner. The presence of a pore-occupying glutamate side chain modulates these effects. Molecular dynamics simulations show backbone amides determine ion energetics within the bCLC-k pore and how insertion of an α-hydroxy acid alters selectivity. We propose that backbone-ion interactions are determinants of Cl specificity in CLC channels in a mechanism reminiscent of that described for K channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726985PMC
http://dx.doi.org/10.1038/s41467-022-35279-1DOI Listing

Publication Analysis

Top Keywords

clc-type channels
12
backbone amides
8
channels
6
selectivity
5
amides determinants
4
determinants selectivity
4
selectivity clc
4
clc ion
4
ion channels
4
channels chloride
4

Similar Publications

An Artificial Single Molecular Channel Showing High Chloride Transport Selectivity and pH-Responsive Conductance.

Angew Chem Int Ed Engl

June 2023

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Inspired by the unique structure and function of the natural chloride channel (ClC) selectivity filter, we present herein the design of a ClC-type single channel molecule. This channel displays high ion transport activity with half-maximal effective concentration, EC , of 0.10 μM, or 0.

View Article and Find Full Text PDF

Chloride homeostasis is regulated in all cellular compartments. CLC-type channels selectively transport Cl across biological membranes. It is proposed that side-chains of pore-lining residues determine Cl selectivity in CLC-type channels, but their spatial orientation and contributions to selectivity are not conserved.

View Article and Find Full Text PDF

Early/late endosomes, recycling endosomes, and lysosomes together form the endo-lysosomal recycling pathway. This system plays a crucial role in cell differentiation and survival, and dysregulation of the endo-lysosomal system appears to be important in the pathogenesis of neurodevelopmental and neurodegenerative diseases. Each endo-lysosomal compartment fulfils a specific function, which is supported by ion transporters and channels that modify ion concentrations and electrical gradients across endo-lysosomal membranes.

View Article and Find Full Text PDF

A quantitative flux assay for the study of reconstituted Cl channels and transporters.

Methods Enzymol

June 2021

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Biochemistry, Weill Cornell Medical College, New York, NY, United States. Electronic address:

The recent deluge of high-resolution structural information on membrane proteins has not been accompanied by a comparable increase in our ability to functionally interrogate these proteins. Current functional assays often are not quantitative or are performed in conditions that significantly differ from those used in structural experiments, thus limiting the mechanistic correspondence between structural and functional experiments. A flux assay to determine quantitatively the functional properties of purified and reconstituted Cl channels and transporters in membranes of defined lipid compositions is described.

View Article and Find Full Text PDF

The CLC family of anion channels and transporters includes Cl/H exchangers (blocked by F) and F/H exchangers (or CLCs). CLCs contain a glutamate (E318) in the central anion-binding site that is absent in CLC Cl/H exchangers. The X-ray structure of the protein from (CLC-eca) shows that E318 tightly binds to F when the gating glutamate (E118; highly conserved in the CLC family) faces the extracellular medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!