Time course and mechanistic analysis of human umbilical cord perivascular cell mitigation of lipopolysaccharide-induced systemic and neurological inflammation.

Cytotherapy

CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Published: February 2023

Background Aims: Because of their potent immunomodulatory and anti-inflammatory properties, mesenchymal stromal cells are a major focus in the field of stem cell therapy. However, the precise mechanisms underlying this are not entirely understood. Human umbilical cord perivascular cells (HUCPVCs) are a promising cell therapy candidate. This study was designed to evaluate the time course and mechanisms by which HUCPVCs mitigate lipopolysaccharide (LPS)-induced systemic and neurological inflammation in immunocompetent mice. To explore the underlying mechanisms, the authors investigated the biodistribution and fate of HUCPVCs.

Methods: Male C57BL/6 mice were randomly allocated to four groups: control, LPS, HUCPVCs or LPS + HUCPVCs. Quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and cytokine arrays were used to assess changes in pro-inflammatory mediators systemically and in the brain. Depressive-like behavioral changes were evaluated via a forced swim test. Quantum dot (qDot) labeling and immunohistochemistry were used to assess the biodistribution and fate of HUCPVCs and interactions with recipient innate immune cells.

Results: A single intravenously delivered dose of HUCPVCs significantly reduced the systemic inflammation induced by LPS within the first 24 h after administration. HUCPVC treatment abrogated the upregulated expression of pro-inflammatory genes in the hippocampus and cortex and attenuated depressive-like behavior induced by LPS treatment. Biodistribution analysis revealed that HUCPVC-derived qDots rapidly accumulated in the lungs and demonstrated limited in vivo persistence. Furthermore, qDot signals were associated with major recipient innate immune cells and promoted a shift in macrophages toward a regulatory phenotype in the lungs.

Conclusions: Overall, this study demonstrates that HUCPVCs can successfully reduce systemic and neurological inflammation induced by LPS within the first 24 h after administration. Biodistribution and fate analyses suggest a critical role for the innate immune system in the HUCPVC-based immunomodulation mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2022.10.014DOI Listing

Publication Analysis

Top Keywords

systemic neurological
12
neurological inflammation
12
biodistribution fate
12
innate immune
12
induced lps
12
time course
8
human umbilical
8
umbilical cord
8
cord perivascular
8
cell therapy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!