There is great concern in the medical community due to rapid increase in antibiotic resistance, causing 700,000 deaths annually worldwide. Therefore, there is paramount need to develop novel and innovative antibacterial agents active against resistant bacterial strains. DNA gyrase is a crucial enzyme in bacterial replication that is absent in eukaryotes, making it effective curative target for antibacterials. To identify potential DNA gyrase inhibitors by virtual screening of NCI database using a 3-step approach. A total of 271 compounds with known IC50 values against DNA GyrA were selected to develop a pharmacophore model for dual screening approach to identify new potential hits from the NCI database. In the second step, the NCI database was also screened using in-house built NN-QSAR model. Molecular docking of common 5298 compounds screened from both methods were performed against DNA GyrA (PDB id- 6RKU), and 3004 compounds are reported to exhibit lower binding energies than ciprofloxacin (-6.77 Kcal/mol). The top three compounds (NCI371878, NCI371876 and NCI142159) reported with binding energy of -13.5, -13.19 and -13.03 Kcal/mol were further subjected to MD simulation studies for 100 ns supporting the stability of the docked complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2153171DOI Listing

Publication Analysis

Top Keywords

identify potential
12
dna gyrase
12
nci database
12
pharmacophore model
8
potential dna
8
gyrase inhibitors
8
dna gyra
8
dna
5
development pharmacophore
4
model identify
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!