Background: There are still uncertainties in our knowledge of the amount of SARS-CoV-2 virus present in the environment - where it can be found, and potential exposure determinants - limiting our ability to effectively model and compare interventions for risk management.

Aim: This study measured SARS-CoV-2 in three hospitals in Scotland on surfaces and in air, alongside ventilation and patient care activities.

Methods: Air sampling at 200 L/min for 20 min and surface sampling were performed in two wards designated to treat COVID-19-positive patients and two non-COVID-19 wards across three hospitals in November and December 2020.

Findings: Detectable samples of SARS-CoV-2 were found in COVID-19 treatment wards but not in non-COVID-19 wards. Most samples were below assay detection limits, but maximum concentrations reached 1.7×10 genomic copies/m in air and 1.9×10 copies per surface swab (3.2×10 copies/cm for surface loading). The estimated geometric mean air concentration (geometric standard deviation) across all hospitals was 0.41 (71) genomic copies/m and the corresponding values for surface contamination were 2.9 (29) copies/swab. SARS-CoV-2 RNA was found in non-patient areas (patient/visitor waiting rooms and personal protective equipment changing areas) associated with COVID-19 treatment wards.

Conclusion: Non-patient areas of the hospital may pose risks for infection transmission and further attention should be paid to these areas. Standardization of sampling methods will improve understanding of levels of environmental contamination. The pandemic has demonstrated a need to review and act upon the challenges of older hospital buildings meeting current ventilation guidance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721166PMC
http://dx.doi.org/10.1016/j.jhin.2022.11.019DOI Listing

Publication Analysis

Top Keywords

three hospitals
8
non-covid-19 wards
8
covid-19 treatment
8
genomic copies/m
8
non-patient areas
8
air
5
measurement sars-cov-2
4
sars-cov-2 air
4
air surfaces
4
surfaces scottish
4

Similar Publications

Analysis of the hemodynamic impact of coronary plaque morphology in mild coronary artery stenosis.

Comput Methods Programs Biomed

January 2025

Department of Mechanics & Engineering, College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park / Yibin Istitute of Industrial Technology, Yibin 644000, China. Electronic address:

Objectives: As is well known, plaque morphology plays an important role in the hemodynamics of stenotic coronary arteries, thus their clinic outcomes. However, so far, there has been no research on how the cross-sectional shape of a stenotic lumen affects its hemodynamics. Therefore, this study aims to explore the impact of plaque cross-sectional shape on coronary hemodynamics under mild or moderate stenosis conditions (diameter stenosis degree ≤50 %).

View Article and Find Full Text PDF

Background: There is debate as to whether kinematic TKA or mechanical alignment TKA is superior. Recent systematic reviews have suggested that kinematically aligned TKAs may be the preferred option. However, the observed differences in alignment favoring kinematic alignment may not improve outcomes (performance or durability) in ways that patients can perceive, and likewise, statistical differences in outcome scores sometimes observed in clinical trials may be too small for patients to notice.

View Article and Find Full Text PDF

Abelacimab versus Rivaroxaban in Patients with Atrial Fibrillation.

N Engl J Med

January 2025

From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston (C.T.R., S.M.P., R.P.G., D.A.M., J.F.K., E.L.G., S.A.M., S.D.W., M.S.S.); Anthos Therapeutics, Cambridge, MA (B.H., S.P., D.B.); the Heart Rhythm Center, Taipei Veterans General Hospital and Cardiovascular Center, Taipei, Taiwan (S.-A.C.); Taichung Veterans Hospital, Taichung, Taiwan (S.-A.C.); National Yang Ming Chiao Tung University, Hsinchu, Taiwan (S.-A.C.); National Chung Hsing University, Taichung, Taiwan (S.-A.C.); St. Michael's Hospital, Unity Health Toronto, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto (S.G.G.); Canadian VIGOUR Centre, University of Alberta, Edmonton, Canada (S.G.G.); the Division of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea (B.J.); the Department of Cardiology, Central Hospital of Northern Pest-Military Hospital, Budapest, Hungary (R.G.K.); the Heart and Vascular Center, Semmelweis University, Budapest, Hungary (R.G.K.); the Internal Cardiology Department, St. Ann University Hospital and Masaryk University, Brno, Czech Republic (J.S.); the Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland (W.W.); the Departments of Medicine and of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada (J.W.); and the Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada (J.W.).

Background: Abelacimab is a fully human monoclonal antibody that binds to the inactive form of factor XI and blocks its activation. The safety of abelacimab as compared with a direct oral anticoagulant in patients with atrial fibrillation is unknown.

Methods: Patients with atrial fibrillation and a moderate-to-high risk of stroke were randomly assigned, in a 1:1:1 ratio, to receive subcutaneous injection of abelacimab (150 mg or 90 mg once monthly) administered in a blinded fashion or oral rivaroxaban (20 mg once daily) administered in an open-label fashion.

View Article and Find Full Text PDF

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

Simplified Technique for Correcting Intraocular Lens Decentration in Scleral-Sutured Fixation Surgery.

Retina

January 2025

Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China.

Purpose: To describe a simplified technique for correcting intraocular lens (IOL) decentration during scleral-sutured IOL fixation surgery.

Methods: During surgery, Purkinje images were utilized to assess IOL positioning. A straightforward IOL decentration adjustment technique was employed when necessary.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!