A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental and health risk implications of unregulated emissions from advanced biofuels in a Euro 6 engine. | LitMetric

Environmental and health risk implications of unregulated emissions from advanced biofuels in a Euro 6 engine.

Chemosphere

Escuela Técnica Superior de Ingeniería Industrial, University of Castilla - La Mancha, Edificio Politécnico, Avda. Camilo José Cela, s/n., 13071, Ciudad Real, Spain. Electronic address:

Published: February 2023

The use of conventional and advanced biofuels is part of the efforts to reduce greenhouse gases and harmful exhaust gaseous emissions. This study investigates the unregulated emissions in gas and particles from a Euro 6b diesel engine, operated with four unconventional and advanced biofuels (two hydrogenated terpenic biofuels, a polyoxymethylene dimethyl ether, and a glycerol-derived biofuel), blended with diesel fuel and pure hydrotreated vegetable oil as base biofuel. The engine was operated following WLTC starting from cold-engine conditions. Gas phase samples were collected at each phase of the driving cycle and particulate matter (PM) samples were collected from a dilution tunnel at the end of the driving cycle. A total of 16 PAH and 13 carbonyls were analyzed. In addition, the apoptotic index induced by gas and particle emissions was determined. In the gaseous phase, the total PAH and carbonyl emission factors were higher at the low-speed phase for all fuels. Gas-phase PAH emission factors exceeded particle-bound PAH. Carbonyl emission factors ranged from 0.12 ± 0.012 to 25.3 ± 4.2 mg/km, markedly exceeding gaseous PAH emissions, which ranged from 20.7 ± 1.5 to 51.7 ± 8.9 μg/km. Diesel fuel exhibited the highest carbonyl emissions and its blend with 20% of hydrogenated turpentine exhibited the highest PAH emissions at the end of the WLTC, both due to high emissions at the low-speed phase. Although particle-bound PAH comprise only a small fraction of total PAH emissions, both phases (gas and particles) contributed approximately equal to the toxicity associated with carcinogenic PAH. The apoptotic cells percentage increased in a dose-dependent manner and was significantly higher in cells exposed to gas phase-derived samples. The apoptotic index induced by particulate matter samples did not show a concentration-response effect for any of the fuels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137462DOI Listing

Publication Analysis

Top Keywords

advanced biofuels
12
total pah
12
emission factors
12
pah emissions
12
emissions
9
pah
9
unregulated emissions
8
gas particles
8
engine operated
8
diesel fuel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!