Hyaluronic acid mediated FeO nanocubes reversing the EMT through targeted cancer stem cell.

Colloids Surf B Biointerfaces

Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China. Electronic address:

Published: February 2023

Hepatocellular carcinoma (HCC) is one of the deadliest tumors in the world with a high rate of recurrence and metastasis. Therefore, the most pressing issue today is the development of new drugs, diagnostic and therapeutic approaches for effective cancer treatment. Cancer stem cells (CSCs) play a pivotal role in tumor recurrence, tumor resistance, and tumor metastasis, which provides a new perspective on the development of liver cancer. In the study, a high-temperature thermal breakdown approach was used to create composite magnetic nanocubes modified by polyethyleneimine (PEI) and hyaluronic acid (HA). The FeO nanocubes can recognize HCC stem cells via receptor-ligand binding of HA and CD44 (HA receptor). While loading a small molecule LDN193189 inhibited the expression of stemness-related genes OCT4 and Nanog. More crucially, the FeO nanocubes significantly suppressed HCC cell proliferation and migration by regulating the expression of epithelial-mesenchymal transition (EMT) process markers E-cadherin, Vimentin, and N-cadherin. Dual targeting using magnetic and receptor-mediated targeting improved the uptake of the drug delivery system. Our findings imply that the medication delivery method might be a potential therapeutic strategy for HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.113071DOI Listing

Publication Analysis

Top Keywords

feo nanocubes
12
hyaluronic acid
8
cancer stem
8
stem cells
8
acid mediated
4
mediated feo
4
nanocubes
4
nanocubes reversing
4
reversing emt
4
emt targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!