Secondary pollution of microplastic hetero-aggregates after chlorination: Released contaminants rarely re-adsorbed by the second-formed hetero-aggregates.

J Hazard Mater

School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China. Electronic address:

Published: March 2023

In urban waters, microplastics (MPs) usually form hetero-aggregates through adsorption of organics and microbes. However, the effects of hetero-aggregates on water quality are rarely reported. In this study we found that the hetero-aggregates, which accumulated contaminants, were like a "time bomb". Chlorination was able to trigger the "time bomb" through destruction of hetero-aggregates, lysis of microbial cells and elevation of the concentration of low-molecular-mass organics. Thereupon previously adhered organics desorbed from MPs, intracellular metabolites were released from lysed cells, and re-formation of hetero-aggregates was limited. This process rapidly increased the concentration of organics but prevented the re-adsorption of organics, which leads to secondary pollution. Thus, to alleviate the risks of secondary pollution caused by hetero-aggregates, the choice of oxidant species and dose should be optimized based on the characteristics of existent hetero-aggregates when purifying urban waters containing MPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130523DOI Listing

Publication Analysis

Top Keywords

secondary pollution
12
hetero-aggregates
9
urban waters
8
"time bomb"
8
organics
5
pollution microplastic
4
microplastic hetero-aggregates
4
hetero-aggregates chlorination
4
chlorination released
4
released contaminants
4

Similar Publications

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

Underestimated Industrial Ammonia Emission in China Uncovered by Material Flow Analysis.

Environ Pollut

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:

Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.

View Article and Find Full Text PDF

Online monitoring of water quality in industrial wastewater treatment process based on near-infrared spectroscopy.

Water Res

January 2025

NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, Jinan 250021, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong, Jinan 250012, China; Shandong Engineering Research Center for Transdermal Drug Delivery Systems, Shandong, Jinan 250098, China. Electronic address:

Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring.

View Article and Find Full Text PDF

24-epibrassinolide regulates oxytetracycline-induced phytotoxicity and its detoxification mechanism.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.

View Article and Find Full Text PDF

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!