Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three structurally closely related dopamine D1 receptor positive allosteric modulators (D1 PAMs) based on a tetrahydroisoquinoline (THIQ) scaffold were profiled for their CYP3A4 induction potentials. It was found that the length of the linker at the C5 position greatly affected the potentials of these D1 PAMs as CYP3A4 inducers, and the level of induction correlated well with the activation of the pregnane X receptor (PXR). Based on the published PXR X-ray crystal structures, we built a binding model specifically for these THIQ-scaffold-based D1 PAMs in the PXR ligand-binding pocket via an ensemble docking approach and found the model could explain the observed CYP induction disparity. Combined with our previously reported D1 receptor homology model, which identified the C5 position as pointing toward the solvent-exposed space, our PXR-binding model coincidentally suggested that structural modifications at the C5 position could productively modulate the CYP induction potential while maintaining the D1 PAM potency of these THIQ-based PAMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.2c01175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!