Large ambient temperature changes (-20->25 °C) bring great challenges to the purification of the indoor pollutant formaldehyde. Within such a large ambient temperature range, we herein report a manganese-based strategy, that is, a mullite catalyst (YMnO) + ozone, to efficiently remove the formaldehyde pollution. At -20 °C, the formaldehyde removal efficiency reaches 62% under the condition of 60,000 mL g h. As the reaction temperature is increased to -5 °C, formaldehyde and ozone are completely converted into CO, HO, and O, respectively. Such a remarkable performance was ascribed to the highly reactive oxygen species generated by ozone on the YMnO surface based on the low temperature-programed desorption measurements. The infrared spectra showed the intermediate product carboxyl group (-COOH) to be the key species. Based on the superior performance, we built a consumable-free air purifier equipped with mullite-coated ceramics. In the simulated indoor condition (25 °C and 30% relative humidity), the equipment can effectively decompose formaldehyde (150 m h) without producing secondary pollutants, rivaling a commercial removal efficiency. This work provides an air purification route based on the mullite catalyst + ozone to remove formaldehyde in an ambient temperature range (-20->25 °C).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c07843DOI Listing

Publication Analysis

Top Keywords

ambient temperature
12
-20 °c
8
large ambient
8
-20->25 °c
8
temperature range
8
mullite catalyst
8
remove formaldehyde
8
°c formaldehyde
8
removal efficiency
8
formaldehyde
7

Similar Publications

The escalating global climate crisis and energy challenges have made the development of efficient radiative cooling materials increasingly urgent. This study presents a machine-learning-based model for predicting the performance of radiative cooling aerogels (RCAs). The model integrated multiple parameters, including the material composition (matrix material type and proportions), modification design (modifier type and content), optical properties (solar reflectance and infrared emissivity), and environmental factors (solar irradiance and ambient temperature) to achieve accurate cooling performance predictions.

View Article and Find Full Text PDF

The Second Law of Infodynamics: A Thermocontextual Reformulation.

Entropy (Basel)

December 2024

Independent Researcher, Leesburg, VA 20176, USA.

Vopson and Lepadatu recently proposed the Second Law of Infodynamics. The law states that while the total entropy increases, information entropy declines over time. They state that the law has applications over a wide range of disciplines, but they leave many key questions unanswered.

View Article and Find Full Text PDF

Correlation between night sweats and season fluctuation in China.

Front Public Health

January 2025

Shandong Academy of Chinese Medicine, Jinan, China.

Background: Night sweats are a condition in which an individual sweats excessively during sleep without awareness, and stops when they wake up. Prolonged episodes of night sweats might result in the depletion of trace elements and nutrients, affecting the growth and development of children.

Purpose: To investigate the relationship between sweat nights and season.

View Article and Find Full Text PDF

A cross-sectional analysis was performed to investigate associations between environmental temperatures and injury occurrence in two professional male football (soccer) leagues. Data from seven seasons of the German Bundesliga (2142 matches) and four seasons of the Australian A-League (470 matches) were included. Injuries were collated via media reports for the Bundesliga and via team staff reports in the A-League and comprised injury incidence, mechanisms (contact, noncontact), locations (e.

View Article and Find Full Text PDF

Enhanced ensemble learning-based uncertainty and sensitivity analysis of ventilation rate in a novel radiative cooling building.

Heliyon

January 2025

Department of Energy System Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 15, Pardis St., Molasadra Ave., Vanak Sq., Tehran, Iran.

The rising global demand for air conditioning systems, driven by increasing temperatures and urbanization, has led to higher energy consumption and greenhouse gas emissions. HVAC systems, particularly AC, account for nearly half of building energy use, highlighting the need for efficient cooling solutions. Passive cooling, especially radiative cooling, offers potential to reduce cooling loads and improve energy efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!