The electron-donating capabilities of carbazoles have stimulated interest in their use as photoinduced single-electron reductants. Due to the modularity of the carbazole, a further broadening and understanding of their reactivity could be achieved by manipulating the structure. Herein, eight carbazole derivatives were synthesized, characterized, and assessed as single-electron photoreductants in the hydrodehalogenation of aryl halides and the arylation of -methylpyrrole.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c02312 | DOI Listing |
J Org Chem
January 2025
Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV).
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
pH balance is an important factor in regulating the internal environment of body and maintaining the normal physiological activities, but pH cannot be detected in vivo without damaging the tissue. It is important to develop a pH probe with low toxicity, high sensitivity and targeting of organelles. In this research, a novel carbazole-pyrimidine-based probe PKZP was designed from 2-hydroxyl-3-pinanone which was derived from natural monoterpene α-pinene for detecting both acidic and basic pH in vivo.
View Article and Find Full Text PDFMolecules
December 2024
Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.
The cutouts of graphene sheets, particularly those with a nonplanar topology, present vast opportunities for advancement. Even a slight deviation from the planar structure can lead to intriguing (chiro)optical features for helically twisted nanographenes. In this context, we introduce two regioisomeric π-extended nanographenes that exhibit distinct excited-state characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!