The present work describes the synthesis of molnupiravir by employing commercially available inexpensive materials in two steps with an overall yield of 85.7%. The synthetic methodology starts with an eco-friendly starting material, that is, cytidine and establishes an alternative way to avoid costly enzyme mediated reactions. This synthetic strategy involves a selective acylation of cytidine as the first key step followed by the second step, that is, hydroxamination reaction. The major advantage of this protocol is that it is completely free of protection and deprotection reactions. Chemoselective acylation of cytidine's primary alcohol was achieved using isobutyryl chloride, EtN, and DMF solvent (89.3% yield). The aqueous phase transformation was achieved for the hydroxamination reaction with a 96% yield.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770.2022.2153140DOI Listing

Publication Analysis

Top Keywords

synthesis molnupiravir
8
hydroxamination reaction
8
molnupiravir mk-4482
4
mk-4482 eidd-2801
4
eidd-2801 promising
4
promising oral
4
oral drug
4
drug treatment
4
treatment covid-19
4
covid-19 starting
4

Similar Publications

Searching for natural alternatives to replace environmentally harmful chemical reagents in analysis is just as crucial as finding easily accessible analytical tools. To reinforce these concepts, this study proposes a simple spectrofluorometric approach using natural carbon quantum dots (n-CQDs) as fluorescence probes for sensitive and environmentally friendly measurement of molnupiravir, an antiviral drug that was initially developed for influenza and has demonstrated potential efficacy against COVID-19. n-CQDs were synthesized using garlic peels (GP), a waste material, via a microwave-assisted method.

View Article and Find Full Text PDF

Response to Reader Comment on: "Comprehensive genotoxicity and carcinogenicity assessment of molnupiravir".

Toxicol Sci

December 2024

Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc, Rahway, New Jersey, USA.

View Article and Find Full Text PDF

To design a safe cellular system for testing inhibitors targeting the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, a genetic construct was engineered containing viral cDNA with two blocks of reporter genes while the genes encoding structural S, E, and M proteins were absent. The first reporter block, consisting of Renilla luciferase and green fluorescent protein (Rluc-GFP), was located upstream of the SARS-CoV-2 5'-UTR. Meanwhile, the second block represented by firefly luciferase and red fluorescent protein (Fluc-RFP) was positioned downstream of the transcription regulatory sequence (TRS-N).

View Article and Find Full Text PDF

Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine.

Antiviral Res

January 2025

Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany. Electronic address:

Article Synopsis
  • - RNA viruses like influenza and coronaviruses pose significant health threats, often lacking effective vaccines or treatments, while others like filo- and henipaviruses have high mortality rates despite limited outbreaks.
  • - The antiviral drug 4'-Fluorouridine (4'-FlU) inhibits RNA virus replication by targeting the RNA-dependent RNA polymerase, but its effectiveness varies across different viruses, necessitating strategies to improve its potency.
  • - Researchers found that inhibiting dihydroorotate dehydrogenase (DHODH) enhances the antiviral effects of 4'-FlU against several RNA viruses, including in models of infection, potentially by depleting uridine, which boosts 4'-FlU's incorporation into viral
View Article and Find Full Text PDF

Since the coronavirus disease 2019 (COVID-19) outbreak, although have controlled, severe acute respiratory syndrome coronavirus 2 is constantly mutating and affects people's health. FDA has approved Paxlovid and Molnupiravir for COVID-19 treatment, however, they have not been approved for children under 12 years old. Therefore, it is urgent to explore new drugs for treating COVID-19 in children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!