Long-term exposure to ultraviolet (UV) irradiation, especially UVB, can trigger destructive intracellular effects, including various types of DNA damage, oxidative stress, and inflammatory responses, leading to accelerated skin aging. Ginsenoside Rk1, a rare ginsenoside pertaining to panaxadiol saponins, has been certified to possess underlying anti-inflammatory effects. Nevertheless, the efficiency of Rk1 against the photoaging of human skin and the latent molecular mechanisms are still unclear. Here, UVB-irradiated HaCaT keratinocytes were used as an model, and UVB-irradiated BALB/c nude mouse dorsal skin was established as an model to explore the mechanism by which Rk1 protects skin. Consequently, we found that Rk1 administration significantly attenuated oxidative stress by suppressing reactive oxygen species (ROS) overproduction and strengthening the activities of antioxidant enzymes. The UVB-induced inflammatory response was alleviated by Rk1 application regulation of the secretion of various proinflammatory cytokines. Additionally, western blot assays illustrated that Rk1 intervention inhibited collagen degradation by reducing the expression of matrix metalloproteinases. Further studies revealed that Rk1 could suppress the PI3K/AKT/NF-κB signaling pathways and . Molecular docking results indicated that Rk1 might effectively bind to the active pockets of PI3K, AKT, and NF-κB. The PI3K activator 740 Y-P clearly reversed the effects of Rk1 on oxidative stress, the inflammatory response, and collagen degradation in UVB-irradiated HaCaT cells. Moreover, histological and Masson staining verified that the administration of Rk1 to BALB/c nude mice remarkably ameliorated UVB-induced skin roughness, epidermal thickening, collagen fiber arrangement disorder, and wrinkles. Overall, the evidence provided in this study suggested that Rk1 could be applied for the development of effective natural antiphotoaging agents for skin health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c06377 | DOI Listing |
J Agric Food Chem
January 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Biology, Hamilton College, Clinton, NY, USA.
Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.
View Article and Find Full Text PDFSci Rep
January 2025
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.
The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!