Pesticides can volatilize from treated soil to the atmosphere causing increased environmental pollution and human exposure. Exposure assessment to airborne pesticides requires reasonable predictions of pesticide emissions. Understanding the volatilization behavior due to changes in environmental conditions can help in assessing the risk uncertainty and designing better mitigation strategies. In this study, we developed a mechanistic model that can be used to predict the hourly volatilization emissions from pesticide-treated soil at different environmental conditions. Pesticide properties and local environmental conditions drive the transport processes at the soil-air interface within the model. The numerical model simultaneously calculates the soil fluxes of heat, moisture, and pesticide at the soil-air interface with inputs of hourly meteorological data. The initial condition of pesticide concentration in soil is obtained from the applied mass during treatment. The numerical model was compared with an analytical model and with field observations for a soil injected fumigant and two surface applied pesticides. The model performance of 14 pesticides under stagnant conditions against the Jury's analytical model showed reasonable agreement with values for the coefficient of determination (R) ranging from 0.76 to 0.99. The model was a good predictor of the field-scale volatilization of a fumigant (1,3-dichloropropene) application when compared to observations (R ). Both the timing of the peak and the temporal variability of the measured volatilization of the fumigant were captured by the model when the fumigant was incorporated at a depth of 46 cm in the soil column. The model also showed reasonable agreement with the measured volatilization of two surface-treated pesticides, though site-specific meteorological data was unavailable for these observations. The results indicate that the modeling approach could be a useful tool to evaluate the impact of location-specific meteorological conditions on the field volatility of pesticides and determine the emissions for risk assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718968 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e11810 | DOI Listing |
JMIR Infodemiology
January 2025
Salzburg University of Applied Sciences, Puch/Salzburg, Austria.
Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.
This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Museum of Natural History, University of Colorado-Boulder, Boulder, CO 80309.
Amid global challenges like climate change, extinctions, and disease epidemics, science and society require nuanced, international solutions that are grounded in robust, interdisciplinary perspectives and datasets that span deep time. Natural history collections, from modern biological specimens to the archaeological and fossil records, are crucial tools for understanding cultural and biological processes that shape our modern world. At the same time, natural history collections in low and middle-income countries are at-risk and underresourced, imperiling efforts to build the infrastructure and scientific capacity necessary to tackle critical challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!