Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: Predicting tumour response would be useful for selecting patients with locally advanced rectal cancer (LARC) for organ preservation strategies. We aimed to develop and validate a prediction model for T downstaging (ypT0-2) in LARC patients after neoadjuvant chemoradiotherapy and to identify those who may benefit from consolidation chemotherapy.
Materials And Methods: cT3-4 LARC patients at three tertiary medical centers from January 2012 to January 2019 were retrospectively included, while a prospective cohort was recruited from June 2021 to March 2022. Eight filter (principal component analysis, least absolute shrinkage and selection operator, partial least-squares discriminant analysis, random forest)-classifier (support vector machine, logistic regression) models were established to select radiomic features. A nomogram combining radiomics and significant clinical features was developed and validated by calibration curve and decision curve analysis. Interaction test was conducted to investigate the consolidation chemotherapy benefits.
Results: A total of 634 patients were included (426 in training cohort, 174 in testing cohort and 34 in prospective cohort). A radiomic prediction model using partial least-squares discriminant analysis and a support vector machine showed the best performance (AUC: 0.832 [training]; 0.763 [testing]). A nomogram combining radiomics and clinical features showed significantly better prognostic performance (AUC: 0.842 [training]; 0.809 [testing]) than the radiomic model. The model was also tested in the prospective cohort with AUC 0.727. High-probability group (score > 81.82) may have potential benefits from ≥ 4 cycles consolidation chemotherapy (OR: 4.173, 95 % CI: 0.953-18.276, p = 0.058, p = 0.021).
Conclusion: We identified and validated a model based on multicenter pre-treatment radiomics to predict ypT0-2 in cT3-4 LARC patients, which may facilitate individualised treatment decision-making for organ-preservation strategies and consolidation chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719068 | PMC |
http://dx.doi.org/10.1016/j.ctro.2022.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!