Pyrolysis is a cost-effective and environmentally benign method for recycling organic waste, which can be converted into high-energy gases and oils. Pyrolysis technology was employed in this study to recycle copper-containing discarded circuit board material and recover copper, glass fibers, and gases and oils with high calorific values. Thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GC-MS) were used to evaluate pyrolyses of copper-containing waste circuit board materials conducted at different heating rates (5, 10, 20, and 40 °C/min), and the resulting volatiles were studied in detail. The effects of heating rate on the kinetics and activation energies for pyrolyses of copper-containing waste circuit boards were also investigated by using the Coats-Redfern (C-R) method. The TGA curves and FTIR spectra did not differ significantly for different heating rates, and the main functional groups identified with the FTIR results were O-H, C = C, aromatic benzene, substituted benzene, and C-Br. Additionally, GC-MS analyses showed that the heating rate had a great influence on the pyrolysis products formed; the phenol content decreased with increasing heating rate, and the highest content was realized at 5 ℃/min. Energy dispersive spectroscopy (EDS) analyses showed that bromine was removed from the solid phase products during pyrolysis, while copper was effectively enriched in the feedstock. This indicated that pyrolysis can be used to recover copper-containing waste circuit boards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24524-1 | DOI Listing |
Heliyon
January 2025
Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791 Iran.
This research addresses the gap in efficient thawing methods by investigating the effects of ohmic thawing variables and freezing methods on the thawing speed and quality attributes of ground turkey breast, aiming to identify the optimal ohmic thawing method and compare it with traditional air and water thawing techniques. The variables for ohmic thawing consisted of voltage gradient (10, 15, and 20 V/cm), freezing method (Snap (rapid freezing of samples in liquid nitrogen at -210 °C), -70, and -20 °C), and probe type. The results showed that the snap-freezing method demonstrated superior functional and quality characteristics.
View Article and Find Full Text PDFACS Appl Polym Mater
January 2025
Advanced Engineering Division, Savannah River National Laboratory, Savannah River Site, Aiken, South Carolina 29808, United States.
As additive manufacturing (AM) technology has developed and progressed, a constant topic of research in the area is expanding the library of materials to be used with these techniques. Among AM methods that utilize polymers, laser-based powder bed fusion (PBF-LB) has preferentially used thermoplastic polymers as its starting materials, but the deposition and material joining method employed in PBF-LB may also be compatible with powdered thermoset polymer precursors as feedstocks. To assess the compatibility of candidate thermosetting polymers and PBF-LB, characterization techniques and protocols that link fundamental material behavior to material behavior in the processing environment are needed.
View Article and Find Full Text PDFWater Res
January 2025
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China. Electronic address:
The challenges faced by sludge pyrolysis units, including poor heat transfer efficiency and uneven heating of material groups, significantly hinder the green and low-carbon transformation and sustainable development of sludge treatment. The suspension self-rotation of sludge particles in a cyclone enhances particle heat transfer, thereby improving the pyrolysis process. In this study, we developed a novel method for sludge pyrolysis using Cyclone Suspension Self-Rotation Pyrolysis Reactor (CSSPR).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA.
Background: Electronic cigarettes (ECs) are handheld electronic vaping devices that produce an aerosol by heating an e-liquid. People who smoke, healthcare providers, and regulators want to know if ECs can help people quit smoking, and if they are safe to use for this purpose. This is a review update conducted as part of a living systematic review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!