We previously showed that the ribonuclease Regnase-1 (Reg1) in keratinocytes plays a role in mitigating skin inflammation by downregulating proinflammatory cytokines. In this study, we explored whether Reg1 also has a protective role against skin carcinogenesis. The chemically induced two-stage carcinogenesis protocol revealed that epidermis-specific Reg1-deficient (Reg1-knockout [Reg1-cKO]) mice developed skin tumors with shorter latency and more multiplicity than control mice. In addition, repeated UVB irradiation readily provoked solar keratosis-like lesions in Reg1-cKO mice. Increased levels of cyclooxygenase 2, whose mRNA (Ptgs2) is reportedly a target of Reg1, have been known to be associated with the development of squamous cell carcinomas. Indeed, Ptgs2 mRNA levels were upregulated in the skin of Reg1-cKO mice after treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. The level of prostaglandin E2 was higher in 12-O-tetradecanoylphorbol-13-acetate‒treated Reg1-cKO mouse skin than in control mice skin. Moreover, in vivo inhibition of cyclooxygenase 2 attenuated the 12-O-tetradecanoylphorbol-13-acetate‒induced epidermal thickening in Reg1-cKO mice. Finally, REG1 knockdown in human squamous cell carcinomas lines enhanced PTGS2 mRNA levels after 12-O-tetradecanoylphorbol-13-acetate treatment. In conclusion, epidermal Reg1 plays a regulatory role not only in skin inflammation but also in tumor promotion through the downregulation of cyclooxygenase 2. Therefore, forced expression of Reg1 under inflammatory conditions may be relevant to preventing skin cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2022.11.007DOI Listing

Publication Analysis

Top Keywords

skin inflammation
12
reg1-cko mice
12
skin
9
tumor promotion
8
role skin
8
control mice
8
squamous cell
8
cell carcinomas
8
ptgs2 mrna
8
mrna levels
8

Similar Publications

Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.

View Article and Find Full Text PDF

Psoriatic arthritis (PsA) is a chronic, inflammatory disease with heterogeneous clinical features. The pathogenesis of PsA involves a complex interplay of genetic, immunologic, and environmental factors, leading to the activation of the immune system and subsequent inflammation. Over the past decade, the understanding of the immune mechanisms underlying PsA has advanced significantly, particularly regarding the role of the interleukin-23/T helper 17 pathway in the disease process.

View Article and Find Full Text PDF

Seborrheic dermatitis (SD) is a chronic inflammatory skin disorder most commonly affecting areas rich in sebaceous glands, such as the scalp, face, axilla, and groin. Several factors can precipitate SD development, such as colonization of Malassezia, sebocyte activity, impaired immunity, and environmental influences. Topical antifungals, corticosteroids, and calcineurin inhibitors are the current mainstay treatment of SD.

View Article and Find Full Text PDF

Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.

View Article and Find Full Text PDF

Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells.

J Immunol

January 2025

Division of Infectious Diseases, Center for Inflammation and Tolerance, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!