The Lotka-Volterra model is widely used to model interactions between two species. Here, we generate synthetic data mimicking competitive, mutualistic and antagonistic interactions between two tumor cell lines, and then use the Lotka-Volterra model to infer the interaction type. Structural identifiability of the Lotka-Volterra model is confirmed, and practical identifiability is assessed for three experimental designs: (a) use of a single data set, with a mixture of both cell lines observed over time, (b) a sequential design where growth rates and carrying capacities are estimated using data from experiments in which each cell line is grown in isolation, and then interaction parameters are estimated from an experiment involving a mixture of both cell lines, and (c) a parallel experimental design where all model parameters are fitted to data from two mixtures (containing both cell lines but with different initial ratios) simultaneously. Each design is tested on data generated from the Lotka-Volterra model with noise added, to determine efficacy in an ideal sense. In addition to assessing each design for practical identifiability, we investigate how the predictive power of the model - i.e., its ability to fit data for initial ratios other than those to which it was calibrated - is affected by the choice of experimental design. The parallel calibration procedure is found to be optimal and is further tested on in silico data generated from a spatially-resolved cellular automaton model, which accounts for oxygen consumption and allows for variation in the intensity level of the interaction between the two cell lines. We use this study to highlight the care that must be taken when interpreting parameter estimates for the spatially-averaged Lotka-Volterra model when it is calibrated against data produced by the spatially-resolved cellular automaton model, since baseline competition for space and resources in the CA model may contribute to a discrepancy between the type of interaction used to generate the CA data and the type of interaction inferred by the LV model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2022.111377DOI Listing

Publication Analysis

Top Keywords

lotka-volterra model
24
cell lines
20
model
13
data
9
model infer
8
tumor cell
8
practical identifiability
8
mixture cell
8
experimental design
8
initial ratios
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!