Soils are considered as a major reservoir for terrestrial carbon and it can act as a source or sink depending upon the land management activities. In semi-arid areas, the natural recovery of soils degraded by mining activities is complicated. A possible solution to recover soil quality and functionality, plant cover and carbon sequestration capacity could be the application of organic amendments. This work focuses on a restoration carried out in 2018 by applying with different composted organic amendments (stabilized sludge, gardening and greenhouse waste) in a limestone quarry under semi-arid climate (SE Spain). The objective was to evaluate the effects of different organic amendments on net CO exchange in two microcosms: soil-Stipa tenacissima and soil-spontaneous vegetation. Soil physical and chemical properties, environmental and ecological variables and their interrelationship were studied in amended and unamended soils. The results obtained under soil-forming factors in the study area showed an increase in soil organic carbon and nitrogen content, improved moisture and plant growth, and plant canopy development in amended soils. Soil moisture, soil temperature and plant cover significantly influenced net CO exchange. In general, microcosms with S. tenacissima showed higher carbon sequestration rates than soils with only spontaneous plant cover. Soils treated with a vegetable-only amendments showed higher plant cover and CO fixation rates after significant rainfall. On the other hand, the plots treated with sludge compost presented more soil respiration than photosynthesis, especially in the wet seasons. Soils with sludge and greenhouse compost mixed had higher CO fixation rates than soils restored with a mixture of sludge and garden compost. Soils with greenhouse waste compost showed CO fixation in the microcosm with plants in all campaigns, being the best treatment to promote atmospheric CO sequestration in soil restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116873 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!