A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of ofloxacin levels on growth, photosynthesis and chlorophyll fluorescence kinetics in tomato. | LitMetric

Effect of ofloxacin levels on growth, photosynthesis and chlorophyll fluorescence kinetics in tomato.

Plant Physiol Biochem

College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China. Electronic address:

Published: January 2023

Antibiotic pollution has become a global environmental pollution problem. Chlorophyll fluorescence is one of the most important indicators reflecting the degree to which plants are influenced by the environment. Ofloxacin (OFL) is a highly toxic antibiotic pollutant, and there are few reports on the effects of changes in OFL levels on tomato chlorophyll fluorescence parameters. In this study, we investigated the responses of tomato growth, photosynthetic activity and chlorophyll fluorescence kinetics to exogenous OFL exposure (as the concentrations of 0, 2.5, 5, 10 and 20 mg L). The results showed that lower concentrations of OFL (2.5 mg L) had little impact on tomato growth, while plant growth was inhibited with the OFL concentration increasing. At higher OFL concentrations (5, 10 and 20 mg L), chloroplasts ruptured, and chlorophyll became degraded, resulting in leaf etiolation. Furthermore, the photosynthetic and photochemical efficiency and electron transfer rate were significantly inhibited by OFL. Moreover, damage to the oxygen-evolving complex on the donor side of PSⅡ prevented electron transfer from QA to QB and led to photoinhibition. In conclusion, higher OFL concentration reduced photosynthesis by destroying the photosynthetic mechanism in tomato, resulting in tomato leaf etiolation and plant growth inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.11.029DOI Listing

Publication Analysis

Top Keywords

chlorophyll fluorescence
16
fluorescence kinetics
8
ofl
8
tomato growth
8
concentrations 20 mg l
8
plant growth
8
inhibited ofl
8
ofl concentration
8
higher ofl
8
leaf etiolation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!