Surface sediments and sediment core had been collected from Erhai Lake, Southwest China to study the concentrations, toxicity risks, and sources of polycyclic aromatic hydrocarbons (PAHs). The average concentrations of ΣPAHs, seven carcinogenic PAHs (carPAHs), and carcinogenic toxic equivalents (TEQ) in the surface sediments and sediment core were 1634.50 ± 488.56 ng g and 436.72 ± 128.17 ng g, 67.18-293.65 ng g and 91.07-265.90 ng g, and 34.89 ± 13.17 ng g and 36.99 ± 7.52 ng g, respectively. The ΣPAHs and carPAHs concentrations in surface sediments were higher in the southern lake. The ΣPAHs and TEQ in the sediment core peaked in the 2010s and 1980s. The spatiotemporal variations in TEQ and carPAHs were similar. Positive matrix factorization revealed that traffic emissions contributed 35.71 % of the TEQ, whereas coal and biomass combustion contributed 12.89 % in the surface sediments. The contribution of gasoline and fossil fuel to TEQ significantly increased from 19.2 % (1890s) to 66.5 % (1990s), that of benz[a]pyrene (coal combustion) decreased, and those of benz[b]fluoranthene and indeno[1,2,3-cd]pyrene (petroleum combustion and traffic emissions) increased from 1.92 % to 3.93 % and from 1.54 % to 2.52 % in the sediment cores, respectively, owing to changes in energy consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2022.114424 | DOI Listing |
Natl Sci Rev
January 2025
Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA.
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.
View Article and Find Full Text PDFMar Environ Res
January 2025
School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away.
View Article and Find Full Text PDFToxics
December 2024
Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
Recently, 7-diethylamino-4-methylcoumarin (DEAMC) has been identified as a potent antiandrogenic compound in the surface water; however, little is known about the antiandrogenic potentials of other synthetic coumarins and their occurrence in the aquatic ecosystem. In this study, for the first time, we observed that 7-dimethylamino-4-methylcoumarin (DAMC) elicited androgen receptor (AR) antagonistic activity with a 50% inhibitory concentration (IC) of 1.46 µM, which is 14.
View Article and Find Full Text PDFThe Danjiangkou Reservoir is the largest artificial freshwater lake in Asia. This study investigated the spatiotemporal distribution of pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Danjiangkou Reservoir to assess the ecological and human health risks associated with these pollutants. Twenty-three sampling sites in the Danjiangkou Reservoir each collected 23 surface water samples and 23 sediment samples.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
The surging prevalence rates of ESBL-producing (ESBL-Ec) pose a serious threat to public health. To date, most research on drug-resistant bacteria and genes has focused on livestock and poultry breeding areas, hospital clinical areas, natural water environments, and wastewater treatment plants. However, few studies have been conducted on drug-resistant bacteria in vegetable cultivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!