It is increasingly recognized that a single protein can have multiple, sometimes paradoxical, roles in cell functions as well as pathological conditions depending on its cellular locations. Here we report that moesins (MSNs) in the intracellular and extracellular domains present opposing roles in pro-tumorigenic signaling in breast cancer cells. Using live cell imaging with fluorescence resonance energy transfer (FRET)- and green fluorescent protein (GFP)-based biosensors, we investigated the molecular mechanism underlying the cellular location-dependent effect of MSN on Src and β-catenin signaling in MDA-MB-231 breast cancer cells. Inhibition of intracellular MSN decreased the activities of Src and FAK, whereas overexpression of intracellular MSN increased them. By contrast, extracellular MSN decreased the activities of Src, FAK, and RhoA, as well as β-catenin translocation to the nucleus. Consistently, Western blotting and MTT-based analysis showed that overexpression of intracellular MSN elevated the expression of oncogenic genes, such as p-Src, β-catenin, Lrp5, MMP9, Runx2, and Snail, as well as cell viability, whereas extracellular MSN suppressed them. Conditioned medium derived from MSN-overexpressing mesenchymal stem cells or osteocytes showed the anti-tumor effects by inhibiting the Src activity and β-catenin translocation to the nucleus as well as the activities of FAK and RhoA and MTT-based cell viability. Conditioned medium derived from MSN-inhibited cells increased the Src activity, but it did not affect the activities of FAK and RhoA. Silencing CD44 and/or FN1 in MDA-MB-231 cells blocked the suppression of Src activity and β-catenin accumulation in the nucleus by extracellular MSN. Collectively, the results suggest that cellular location-specific MSN is a strong regulator of Src and β-catenin signaling in breast cancer cells, and that extracellular MSN exerts tumor-suppressive effects via its interaction with CD44 and FN1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.11.075 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Tumor Prevention Mechanism of Traditional Chinese Medicine,Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Tumour in Hunan Universities, Hunan University of Chinese Medicine Changsha 410208, China College of Integrative Medicine, Hunan University of Chinese Medicine Changsha 410208, China.
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Lymph node metastasis significantly affects the NSCLC patients' staging, treatment strategy, and prognosis. Studies have shown that IGF2BP3, an oncofetal protein and an m6A reader, overexpresses and correlates to lymph node metastasis and worse overall survival in histopathological studies including NSCLC, but its mechanism needs further study. This study explored IGF2BP3's function and mechanism in LUAD lymphatic metastasis using public databases, a human LUAD tissue microarray, human LUAD cells, and a lymphatic metastasis model in male BALB/c nude mice.
View Article and Find Full Text PDFZhongguo Fei Ai Za Zhi
November 2024
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China. Electronic address:
Molecules
January 2025
Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!