Calcium ion removal at different sodium chloride concentrations by free and immobilized halophilic bacteria.

Water Res

College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China. Electronic address:

Published: February 2023

Much attention has been paid to Ca ion removal by biomineralization due to the dangers of Ca on industrial processes and human health. However, Ca removal from hypersaline water by biomineralization is quite difficult due to there being few halophilic bacteria tolerating higher salinities. In this study, free and immobilized Virgibacillus massiliensis C halophilic bacteria exhibiting carbonic anhydrase activity were used to remove Ca ions from water at different NaCl concentrations. With increasing NaCl concentrations (10, 50, 100, 150 and 200 g/L), Ca ion concentrations in the presence of free bacteria and in two groups of immobilized bacteria for a period of 6 days sharply decreased from 1200 mg/L to 219-562 mg/L, 71-214 mg/L and 21-159 mg/L, respectively; Ca precipitation ratios were 55%-81%, 82%-94% and 87%-98%, respectively. The humic acid-like substances, protein, DNA and polysaccharide, released by the bacteria, promoted the Ca ion removal. The immobilized bacteria were able to be recycled and precultured, which would save industry costs and increase Ca ion removal efficiency. Biological processes for Ca ion removal include cell surface, intracellular and extracellular biomineralization. The biogenesis of calcium carbonate was proved by SEM-EDS, FTIR, XPS and stable carbon isotope values. This study provides insights into the effective removal of Ca ions by biomineralization in hypersaline water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119438DOI Listing

Publication Analysis

Top Keywords

ion removal
20
halophilic bacteria
12
free immobilized
8
hypersaline water
8
nacl concentrations
8
immobilized bacteria
8
removal
7
bacteria
7
ion
5
calcium ion
4

Similar Publications

The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.

View Article and Find Full Text PDF

Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant.

Water Sci Technol

January 2025

China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.

Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.

View Article and Find Full Text PDF

Highly efficient removal of per- and polyfluoroalkyl substances by extrusion-regenerated aminated polyurethane sponges.

Water Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic compounds widely detected in the environments. Due to their chemical stability, physical adsorption has emerged as one of the most promising techniques for remediating PFAS-containing wastewater, while some newly synthesized functional absorbents in powder form suffer from separation issues. Inspired by mussel biology, we have successfully synthesized a porous spongy absorbent termed aminated polyurethane (PU-PDA-PANI) with over 99.

View Article and Find Full Text PDF

Confinement-induced Ni-based MOF formed on TiCT MXene support for enhanced capacitive deionization of chromium(VI).

Sci Rep

January 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.

MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!