Research Note: Effect of a live Salmonella Enteritidis vaccine against Salmonella Pullorum infection in breeder chickens.

Poult Sci

Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. Electronic address:

Published: February 2023

Salmonella Pullorum is one of the most important avian pathogenic bacteria due to widespread outbreaks accompanied by high mortality. It has been demonstrated that the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq is able to induce cross-immunity protection against Salmonella Gallinarum and Salmonella Infantis, however, it is unknown whether this vaccine is effective against Salmonella Pullorum infection. In the present study, the Hubbard parent chickens were orally administrated this vaccine at 1-day-old, 40-day-old, and 131-day-old respectively, and challenged by Salmonella Pullorum at 157-day-old to evaluate the protective effect of the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq. After each vaccination, the vaccine strain could be recovered from cloacal swabs within a week, whereas no vaccine strain was re-isolated from environmental samples throughout the experiment. Vaccination for the breeder chickens with Salmonella Enteritidis Sm24/Rif12/Ssq could relieve swollen liver (P = 0.0066) caused by Salmonella Pullorum infection and decrease Salmonella Pullorum colonization level in spleen (P = 0.0035), whereas no significant difference was found in the bacterial counts of liver, ovary and oviduct of vaccinated chickens. These results suggested that the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq was high safety and effective against Salmonella Pullorum infection to a certain extent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719860PMC
http://dx.doi.org/10.1016/j.psj.2022.102308DOI Listing

Publication Analysis

Top Keywords

salmonella pullorum
28
salmonella enteritidis
20
vaccine strain
20
pullorum infection
16
salmonella
14
enteritidis live
12
live vaccine
12
strain sm24/rif12/ssq
12
vaccine
8
breeder chickens
8

Similar Publications

, a prevalent foodborne pathogen, poses a significant social and economic strain on both food safety and public health. The application of phages in the control of foodborne pathogens represents an emerging research area. In this study, phage vB_SpuM_X5 (phage X5) was isolated from chicken farm sewage samples.

View Article and Find Full Text PDF

Efficient differentiation between Pullorum and Gallinarum by a -based PCR-HRM.

Avian Pathol

January 2025

Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, People's Republic of China.

Pullorum (. Pullorum) and Gallinarum (. Gallinarum) are the biovars of serovar Gallinarum that are responsible for pullorum disease and fowl typhoid in poultry, respectively.

View Article and Find Full Text PDF

Due to consumer demand, many conventional poultry farms are now growing poultry without antibiotics or synthetic chemicals. In addition to this, pasture/organic poultry farms have increased significantly in the USA, and they are also antibiotic- and chemical-free. According to recent reports, both antibiotic-free conventional and pasture poultry farmers are facing the re-emergence of bacterial diseases.

View Article and Find Full Text PDF

Introduction: This study aimed to assess the protective efficacy of MF-06 as a potential alternative to antibiotics in mitigating intestinal mucosal damage in chicks infected with .

Methods: A total of 150 one-day-old SPF chicks were selected and randomly divided into five groups: control group (CK), probiotics group (EM), probiotics treatment group (PT), antibiotic treatment group (AT), group (SI), CK, AT and SI groups were fed a basal diet, EM and PT groups were fed a basal diet supplemented with 1.0 × 10 CFU/g ; PT, AT and SI groups were gavaged with 1.

View Article and Find Full Text PDF

Type I-E CRISPR-Cas system regulates fimZY and T3SS1 genes expression in Salmonella enterica serovar Pullorum.

Vet Microbiol

December 2024

Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China. Electronic address:

Clustered regularly interspaced short palindromic repeats and associated Cas proteins (CRISPR-Cas) provide prokaryotes with adaptive immunity against invasion by plasmids or phages. In Salmonella, the type I-E CRISPR-Cas system is typically considered silent in immunity against foreign genetic elements. To elucidate the role of the CRISPR-Cas system, we chose Salmonella enterica serovar Pullorum S06004 as a model organism due to its four spacers and well-defined biological characteristics observed in previous studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!