Heats of formation and gas phase acidities for the simple acids and their deprotonated anions (A = F, Cl, Br, I, OH, SH, SeH, TeH, OCl, OBr, and OI) were calculated using the Feller-Peterson-Dixon (FPD) method with large basis sets including Douglass-Kroll scalar relativistic corrections. Hydration of the neutral and anionic species was predicted using the supermolecule-continuum approach, resulting in absolute hydration free energies that, when combined with calculated gas phase acidities, produce aqueous acidities and p values for these simple acids that are, in general, in excellent agreement with experimental literature values. Absolute hydration free energy values converged quickly in terms of the experimental values for neutral species, requiring only four explicit HO molecules. HI is anomalous in that it fully dissociates ionically in a water tetramer and was treated without explicit water molecules. The hydration energies of anionic species converged more slowly and were modeled with up to 16 explicit HO molecules. Calculated values for Δ and Δ agree with experimental values within . 1.2 kcal/mol, and Δ and ΔΔ agree with experimental values within 2 kcal/mol in most cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c06205 | DOI Listing |
Sci Rep
January 2025
College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).
View Article and Find Full Text PDFNanotheranostics
January 2025
Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
In treating type 2 diabetes, avoiding glucose reabsorption (glucotoxicity) and managing hyperglycemia are also important. A metabolic condition known as diabetes (type-2) is characterized by high blood sugar levels in comparison to normal Bilosomes (BLs) containing Dapagliflozin (Dapa) were formulated, optimized, and tested for oral therapeutic efficacy in the current investigation. Used the Box Behnken design to optimize the Dapa-BLs, formulated via a thin-film hydration technique.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Sci Rep
December 2024
Department of Pharmacy Services, Vocational School of Health Services, Osmaniye Korkut Ata University, Osmaniye, Turkey.
In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Multiscale Modeling of Fluid Materials, Department of Engineering Physics and Computation, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany.
Machine learning (ML) potentials are a powerful tool in molecular modeling, enabling ab initio accuracy for comparably small computational costs. Nevertheless, all-atom simulations employing best-performing graph neural network architectures are still too expensive for applications requiring extensive sampling, such as free energy computations. Implicit solvent models could provide the necessary speed-up due to reduced degrees of freedom and faster dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!