This study aimed to develop a new bioactive wound dressing based on electrospun poly (L-lactide-co-D, L-lactide) (PLDLLA) nanofibers containing Lawsonia inermis (LI) for burn wounds. The SEM results showed that loading LI increased the average diameter of PLDLLA nanofibers to 528 nm with smooth and beadless morphology. The analysis of LI release from PLDLLA nanofibers and film samples was measured by UV-vis spectrophotometry, and the obtained results revealed that LI molecules could diffuse from the nanofibrous sample with higher rate than film during 48 h. In this regard, the PLDLLA nanofibrous sample as a drug carrier has advantages compared to the film. Moreover, the antibacterial results confirmed the positive influence of LI related to the bacteria which in turn the growth inhibition zones were increased from 6 to 22 mm for , and from 3 to 16 mm for while the LI concentration was set at 1.4% (w/v). Finally, animal model studies demonstrated that PLDLLA-LI nanofibers accelerated burn wound closure remarkably; thereby decreasing the wound area approximately 90% during the treatment period of 19 days. The histological observations dedicated that the appearance of the epithelial layer was increased dramatically alongside the thickness of around 40% for the wound treated with PLDLLA-LI nanofibrous sample rather than that without LI. Besides the epithelialization, it has been found that the wound covered by PLDLLA-LI wound dressing has condensed collagen fibers with no necrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2022.2155779 | DOI Listing |
J Biomater Sci Polym Ed
June 2023
School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran.
This study aimed to develop a new bioactive wound dressing based on electrospun poly (L-lactide-co-D, L-lactide) (PLDLLA) nanofibers containing Lawsonia inermis (LI) for burn wounds. The SEM results showed that loading LI increased the average diameter of PLDLLA nanofibers to 528 nm with smooth and beadless morphology. The analysis of LI release from PLDLLA nanofibers and film samples was measured by UV-vis spectrophotometry, and the obtained results revealed that LI molecules could diffuse from the nanofibrous sample with higher rate than film during 48 h.
View Article and Find Full Text PDFInt J Biol Macromol
November 2021
Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
Using biocompatible polymer nanofibrous conduits with a controlled drug delivery have attracted much attention for peripheral nerve regeneration. This work was aimed at preparing electrospun poly (l-lactide-co-D, l-lactide) (PLDLLA) containing multi-walled carbon nanotubes (MWCNTs) and 4-aminopyridine (4-AP)-loaded molecularly imprinted nanoparticles (MIP) as well as evaluating their performance in in vitro and in vivo assessments. After synthesis of MIP based on poly (methacrylic acid) with imprinting factor of 1.
View Article and Find Full Text PDFInt J Biol Macromol
July 2021
BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium. Electronic address:
Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples.
View Article and Find Full Text PDFInt J Biol Macromol
December 2020
Caspian Faculty of Engineering, College of Engineering, University of Tehran, P. O. Box: 119-43841, Rezvanshahr, Iran.
The aim of this work is to prepare nanofibrous scaffolds based on poly (l-lactide-d, l-lactide)/poly (acrylic acid) [PLDLLA/PAAc] blends in the presence of Dexamethasone [Dexa]-loaded poly (2-hydroxyethyl methacrylate) [HEMA] as molecular imprinted polymer [MIP] nanoparticles [NPs] for enhancing osteogenesis. By adding 10 wt% of PAAc to the PLDLLA and employing response surface methodology, the average diameter of the electrospun nanofibers is approximately 237 nm. To increase the osteogenesis performance of the optimized nanofibrous scaffolds, the MIP nanoparticles are synthesized using HEMA monomer and Dexa template with a molar ratio of 10 to 1.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
February 2020
Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Morphology, hydrophilicity, degradation, mechanical properties, drug release, bacterial resistance, and cell viability are indispensable parameters for a bioactive wound dressing. In this work, the aforementioned terms between hybrid and blend nanofibrous samples based on poly (L-lactide--D, L-lactide) (PLDLLA) and poly (vinyl alcohol) (PVA) containing triclosan (Tri) as an antibacterial drug were investigated. The FE-SEM images showed that the presence of Tri in the hybrid and blend samples led to bimodal, and unimodal diameter size distributions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!